Answer:
"1.4 mL" is the appropriate solution.
Explanation:
According to the question,
Now,
Increase in volume will be:
⇒ 
By putting the given values, we get



S + O2 → SO2
<span>z / (32.0655 g S/mol) x (1 mol SO2 / 1 mol S) x (64.0638 g SO2/mol) = (1.9979 z) g SO2 </span>
<span>C + O2 → CO2 </span>
<span>(9.0-z) / (12.01078 g C/mol) x (1 mol CO2 / 1 mol C) x (44.00964 g CO2/mol) = (32.9776 - 3.66418 z) g CO2 </span>
<span>Add the two masses of SO2 and CO2 and set them equal to the amount given in the problem: </span>
<span>(1.9979 z) + (32.9776 - 3.66418 z) = 27.9 </span>
<span>Solve for z algebraically: </span>
<span>z = 3.0 g S</span>
Explanation:
1. Thermochemical equation is balance stoichiometric chemical equation written with the phases of the reactants and products in the brackets along with the enthalpy change of the reaction.
The given correct thermochemical reactions are:


2. Phase change affect the value of the enthalpy change of the thermochemical equation. This is because change in phase is accompanied by change in energy. For example:


In both reaction phase of water is changing with change in energy of enthalpy of reaction.
Answer:
Electrical force can pull and push
Explanation:
Answer:
0.1 is the retention factor.
Explanation:
Distance covered by solvent ,
Distance covered by solute or ion,
Retention factor
is defined as ratio of distance traveled by solute to the distance traveled by solvent.


0.1 is the retention factor.