For a point charge, how does the potential vary with distance from the point charge, r?
a constant
b. r.
c. 1/r.
d.
.
e.
.
Answer:
The correct option is C
Explanation:
Generally for a point charge the electric potential is mathematically represented as

Here we can deduce that the electric potential varies inversely with the distance i.e

So
Answer:
The answer is Dependent Variable
Answer:
-72.0°C
Explanation:
PV = nRT
Since n, number of moles, is constant:
PV / T = PV / T
(4.65×10⁶ Pa) V / (21 + 273.15) K = (1.06×10⁶ Pa) (3V) / T
T = 201.16 K
T = -72.0°C
I de momento que no what now what the que no se puede el gobierno del presidente y el gobierno
Mass have no effect for the projectile motion and u want to know the height "h"
first,
find the vertical and horizontal components of velocity
vertical component of velocity = 12 sin 61
horizontal component of velocity = 12 cos 61
now for the vertical motion ;
S = ut + (1/2) at^2
where
s = h
u = initial vertical component of velocity
t = 0.473 s
a = gravitational deceleration (-g) = -9.8 m/s^2
h=[12×sin 610×0.473]+[−9.8×(0.473)2]
u can simplify this and u will get the answer
h=.5Gt2
H=1.09m