Answer:
because it can be hard
Explanation:
I said that because they be on bed rest
Answer:
Kf= 36 J
W(net) = 32 J
Explanation:
Given that
m = 2 kg
F= 4 N
t= 2 s
Initial velocity ,u= 2 m/s
We know that rate of change of linear momentum is called force.
F= dP/dt
F.t = ΔP
ΔP = Pf - Pi
ΔP = m v - m u
v= Final velocity
By putting the values
4 x 2 = 2 ( v - 2)
8 = 2 ( v - 2)
4 = v - 2
v= 6 m/s
The final kinetic energy Kf
Kf= 1/2 m v²
Kf= 0.5 x 2 x 6²
Kf= 36 J
Initial kinetic energy Ki
Ki = 1/2 m u²
Ki= 0.5 x 2 x 2²
Ki = 4 J
We know that net work is equal to the change in kinetic energy
W(net) = Kf - Ki
W(net) = 36 - 4
W(net) = 32 J
Answer:
Refractive motion is the impact of a light wave that travels from medium to medium in an angle away from normal, where the direction of light varies. Light is refracted when it crosses the air-to-glass interface and moves slower.
Explanation:
Refractive motion is the impact of a light wave that travels from medium to medium in an angle away from normal, where the direction of light varies. Light is refracted when it crosses the air-to-glass interface and moves slower.
Hope this helps.
Answer:

3257806.62409 m/s
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of Sun = 
r = Radius of Star = 20 km
u = Initial velocity = 0
v = Final velocity
s = Displacement = 16 m
a = Acceleration
Gravitational acceleration is given by

The gravitational acceleration at the surface of such a star is 

The velocity of the object would be 3257806.62409 m/s