Answer:
I think it is 5.6. This is my answer
Answer:
The power for circular shaft is 7.315 hp and tubular shaft is 6.667 hp
Explanation:
<u>Polar moment of Inertia</u>

= 0.14374 in 4
<u>Maximum sustainable torque on the solid circular shaft</u>

=
= 3658.836 lb.in
=
lb.ft
= 304.9 lb.ft
<u>Maximum sustainable torque on the tubular shaft</u>

= 
= 3334.8 lb.in
=
lb.ft
= 277.9 lb.ft
<u>Maximum sustainable power in the solid circular shaft</u>

= 
= 4023.061 lb. ft/s
=
hp
= 7.315 hp
<u>Maximum sustainable power in the tubular shaft</u>

= 
= 3666.804 lb.ft /s
=
hp
= 6.667 hp
<u>Answer:</u>
The height of ramp = 124.694 m
<u>Explanation:</u>
Using second equation of motion,

From the question,
u = 31 m/s; s = 156.3 m, a=0
substituting values

t = 
= 5.042 s
Similary, for the case of landing
t = 5.042 s; initial velocity, u =0
acceleration = acceleration due to gravity, g = 9.81 
Substituting in 

h = 124.694 m
So height of ramp = 124.694 m
Answer:
Frequency, f = 3.73Hz
Explanation:
The frequency of a simple harmonic 6is given by:
f = w/2pi
But w= Sqrt( k/m)
Where k is the spring constant
And m is the mass
Given:
Mass=0.20kg
Spring constant, k=130N/m
w= Sqrt(130/0.20)
w= Sqrt(650)
w= 25.50 m
Frequency, f = w/2pi
f = 25.50/(2×3.142)
f = 3.73Hz
You first find the mass and the volume of that object. Then you divide mass ÷ volume