Answer:
What is the power of focus from the eye when a subject looks from 20 to 500 from its eye?
Explanation:
Is that your question?
Answer:
3.31m/s
Explanation:
Angular momentum for 3s is



Moment if inertia is


Angular speed
ω = L/I

The speed of each ball is
V = ωL

Answer: An 8 kg book at a height of 3 m has the most gravitational potential energy.
Explanation:
Gravitational potential energy is the product of mass of object, height of object and gravitational field.
So, formula to calculate gravitational potential energy is as follows.
U = mgh
where,
m = mass of object
g = gravitational field = 
h = height of object
(A) m = 5 kg and h = 2m
Therefore, its gravitational potential energy is calculated as follows.

(B) m = 8 kg and h = 2 m
Therefore, its gravitational potential energy is calculated as follows.

(C) m = 8 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

(D) m = 5 kg and h = 3 m
Therefore, its gravitational potential energy is calculated as follows.

Thus, we can conclude that an 8 kg book at a height of 3 m has the most gravitational potential energy.
Answer:
Generally speaking, as the human population grows, our consumption of natural resources increases. More humans consume more freshwater, more land, more clothing, etc. ... For example, natural gas plants have become increasingly more efficient, thus humans are able to obtain more energy out of the same amount of gas.
Rapid population growth is detrimental to achieving economic and social progress and to sustainable management of the natural resource base. But there remains a sizeable gap between the private and social interest in fertility reduction, and this gap needs to be narrowed.