I think its c I really don't take physics but I try to help.
The purpose of the machine is to leverage its mechanical advantage such that the force it outputs to move the heavy object is greater than the force required for you to input.
But there's no such thing as a free lunch! When you apply the conservation of energy, the work the machine does on the object will always be equal to (in an ideal machine) or less than the work you input to the machine.
This means that you will apply a lesser force for a longer distance so that the machine can supply a greater force on the object to push it a smaller distance. That is the trade-off of using the machine: it enables you to use a smaller force but at the cost of having to apply that smaller force for a greater distance.
The answer is: The work input required will equal the work output.
Answer:
<em>The 6000 lines per cm grating, will produces the greater dispersion .</em>
Explanation:
A diffraction grating is an optical component with a periodic (usually one that has ridges or rulings on their surface rather than dark lines) structure that splits and diffracts light into several beams travelling in different directions.
The directions of the light beam produced from a diffraction grating depend on the spacing of the grating, and also on the wavelength of the light.
For a plane diffraction grating, the angular positions of principle maxima is given by
(a + b) sin ∅n = nλ
where
a+b is the distance between two consecutive slits
n is the order of principal maxima
λ is the wavelength of the light
From the equation, we can see that without sin ∅ exceeding 1, increasing the number of lines per cm will lead to a decrease between the spacing between consecutive slits.
In this case, light of the same wavelength is used. If λ and n is held constant, then we'll see that reducing the distance between two consecutive slits (a + b) will lead to an increase in the angle of dispersion sin ∅. So long as the limit of sin ∅ not greater that one is maintained.
Answer:
Mental time travel has been studied by psychologists, cognitive neuroscientists, philosophers and in a variety of other academic disciplines. Major areas of interest include the nature of the relationship between memory and foresight, the evolution of the ability (including whether it is uniquely human or shared with other animals), its development in young children, its underlying brain mechanisms, as well as its potential links to consciousness, the self, and free will.
Explanation: