Since she is testing where the plant would grow best, the type, height and amount of water does not help the original question. Only moving the plants will help her determine where to plant the basil plants. Option B. the location of the plants
Answer:
Refractive index of liquid C > Refractive index of liquid B > Refractive index of liquid A
Explanation:
Let the depth of each section is h.
That means the real depth for each section is h.
Apparent depth is liquid A is 7 cm.
Apparent depth in liquid B is 6 cm.
Apparent depth in liquid C is 5 cm.
by the formula of the refractive index
n = real depth / apparent depth
where, n is the refractive index of the liquid.
For liquid A:
.... (1)
For liquid B:
..... (2)
For liquid C:
..... (3)
By comparing all the three equations
nc > nB > nA
Refractive index of liquid C > Refractive index of liquid B > Refractive index of liquid A
You can reason it out like this:
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= 3,600 meters .
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
Answer: Noah's speed is 20km/hr
Explanation:
Given;
Final Distance between them at 5pm =320km
Time of travel = 5pm - 1pm = 4 hours
Let x represent Noah's speed
The Ryan's speed = 3x
Total distance between them in 4hours given that they are traveling at opposite directions is.
Distance = speed × time
(x + 3x) × 4hours = 320km
4x × 4 hours = 320km
x = 320km/(4×4hours)
x = 20km/hr
Noah's speed is 20km/hr