A reaction in which Oxygen (O₂) is produced from Mercury Oxide (HgO) would be a decomposition reaction.
2HgO → 2Hg + O₂
If 250g of O₂ is needed to be produced,
then the moles of oxygen needed to be produced = 250g ÷ 32 g/mol
= 7.8125 mol
Now, the mole ratio of Oxygen to Mercury Oxide is 1 : 2
∴ if the moles of oxygen = 7.8125 mol
then the moles of mercury oxide = 7.8125 mol × 2
= 15.625 mol
Thus the number moles of HgO needed to produce 250.0 g of O₂ is 15.625 mol
When solutions of sodium sulfide and copper(ii) sulfate are mixed, a precipitate of copper(ii) sulfide is formed. The net ionic equation for this reaction is Cu⁺² (aq) + S⁻² (aq) → CuS (s).
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now first write the balanced chemical equation
CuSO₄ (aq) + Na₂S (aq) → CuS(s) + Na₂SO₄ (aq)
Now write the net ionic equation
Cu⁺² (aq) + SO₄⁻² (aq) + 2Na⁺ (aq) + S⁻² (aq) → CuS (s) + 2Na⁺ + SO₄⁻² (aq)
So the net ionic equation is
Cu⁺² (aq) + S⁻² (aq) → CuS (s)
Thus from the above conclusion we can say that When solutions of sodium sulfide and copper(ii) sulfate are mixed, a precipitate of copper(ii) sulfide is formed. The net ionic equation for this reaction is Cu⁺² (aq) + S⁻² (aq) → CuS (s).
Learn more about the Balanced Chemical Equation here: brainly.com/question/26694427
#SPJ4
The Canadarm has allowed for the addition of more modules to the International Space Station, and it has represented Canada’s willingness in international cooperation.
Your answer would be Quarts .
Chromium phosphate pentahydrate