When t=2, the ball has fallen d(2) = 16 (2²) = 64 feet .
When t=5, the ball has fallen d(5) = 16 (5²) = 400 feet .
Distance fallen from t=2 until t=5 is (400 - 64) = 336 feet.
Time period between t=2 until t=5 is (5 - 2) = 3 seconds.
Average speed of the ball from t=2 until t=5 is
(distance covered) / (time to cover the distance)
= 336 feet / 3 seconds = 112 feet per second.
That's what choice-C says.
Answer:PHARMING
Explanation:
Social engineering can be defined as an attempt to manage,change and regulate the future development and the behaviour of a society.
Common types of social engineering attack include; Watering hole, Pretexting, Phishing,Whaling attack, Baiting, PHARMING, and so on.
PHARMING is an attempt to redirect internet traffic from a legitimate site to a different identical-looking site. PHARMING is a spamming practice, a cyberattack and also, a type of phishing in which hackers use in stealing personal information from people on the internet.
PHARMING is done through the injection of malicious data or code into the victims' computer system. This injection is known as the DNS cache poisoning.
Answer:
3000 newton force is required
Explanation:
F = ma
F= 1000 kgs x 3 m/s^ 2
F=3000(kgs x m/s^2)
F=3000 newton
Answer:
a third class lever
Explanation:
The third class or interpower lever is a lever that enables fast and dynamic movements. It places the power between the resistance and the support, so the resistance arm is longer than the power.
It is the most frequent type of lever in the human body and as an example we can put the action of the brachial biceps in the flexion of the elbow, where the biceps is inserted in the forearm between the elbow that is behind and the resistance that would be displaced towards the hand by the weight of the load attached to the weight of the forearm.
A good range of movements is achieved although with less force and is the most frequent type of lever in human movement, although the same joint can form different types of lever depending on the type of movement performed
.
Answer:
1.25 m/s²
Explanation:
Average acceleration is the change in velocity over change in time.
a = Δv / Δt
a = (5 m/s − 0 m/s) / 4 s
a = 1.25 m/s²