Answer:
The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg
Explanation:
Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water
Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C
To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.
Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C
Latent heat of ice = L = 334000 J/kg
Specific heat capacity of water = C = 4186 J/kg.°C
Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m
Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J
543600 m = 36627.5
m = 0.0674 kg = 67.4 g of ice.
Answer:

Explanation:
We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.
1 m =100 cm
Surface area =S=


We have to find the charge Q on the positive plates of the capacitor.
V=Initial voltage between plates
d=Initial distance between plates
Initial Capacitance of capacitor

Capacitance of capacitor after moving plates


Potential difference between plates after moving








Hence, the charge on positive plate of capacitor=
Answer:
diffraction
Explanation:
diffraction occurs when light passes sharp edges or goes through narrow slits the rays are deflected and produce fringes of light and dark bands
Answer:
t = 3 seconds
Explanation:
Given that,
Initial speed, u = 30 m/s
Final speed, v = 0
It slides 45 m to rest.it take the box to come to rest
We need to find how long it take the box to come to rest.
Let a be the acceleration and t is time.

Now finding time.

So, the required time is 3 seconds.
Answer:
reverberation time appropriate to the use and size of the room, adequate balance between direct and reverberant sound, intimacy and good sound diffusion in the room to obtain a uniform sound.
Explanation:The process of ... second method measured the speed of sound propagation by the phase shift.