Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
A positive charge and a negative charge held a certain distance apart are released. as they move, the force on each particle increases
The most common charge carriers are the positively charged proton and the negatively charged electron. The movement of any of these charged particles constitutes an electric current
<h3>What is a Charge ?</h3>
When there are more or fewer protons in an atom than electrons, the substance has an electric charge. Protons have a positive charge, while electrons have a negative charge. If a substance has more protons than electrons, it is positively charged; if it has more electrons, it is negatively charged.
- The SI units for charge are ampere-second or coulomb. When one ampere of electric current goes through the conductor for one second, one coulomb of charge passes through it. Charge is denoted by the formula Q = I t.
Learn more about Charge here:
brainly.com/question/18102056
#SPJ4
The statement that motion is relative is an important concept in physics. The meaning behind this statement is that the motion of an object is relative to either the frame of reference of the observer, or to another distinct frame of reference.
Answer:
both the same
Explanation:
When a ball is thrown vertically upwards, it experiences that same acceleration due to gravity as an object thrown directly downwards.
This means that if we ignore the effects of air resistance, and the two balls have the same initial speed, they are expected both expected to hit the ground at the same speed as a result of the principle of conservation of energy.