Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
Answer:
The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
Explanation:
Given :
The energy E of the electron in a hydrogen atom can be calculated from the Bohr formula:

= Rydberg energy
n = principal quantum number of the orbital
Energy of 11th orbit = 

Energy of 10th orbit = 

Energy difference between both the levels will corresponds to the energy of the wavelength of the line which can be calculated by using Planck's equation.


(Planck's' equation)


The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
I think the best answer is B. Even this is the broadest case for the Conservation of matter and the one for Energy, the only way this can be applied is in nuclear rxns.
Given:
<span>CS2 + 3O2 → CO2 + 2SO2
</span><span>114 grams of CS2 are burned in an excess of O2
</span>
moles CS2 = 114 g/76.143 g/mol → 114g * mol/76.143 g = 1.497 mol
<span>the ratio between CS2 and SO2 is 1 : 2 </span>
moles SO2 formed = 1.497 x 2 = 2.994 moles → 2nd option