It’s can go down to 50 degrees soo that can do
Answer:
FeSO2
Explanation:
Please see attached picture for full solution.
Answer:
0.01M = [H⁺]; 1x10⁻¹²M = [OH⁻]; Ratio is: 1x10¹⁰
Explanation:
pH is defined as -log [H⁺]
For a pH of 2 we can solve [H⁺] as follows:
pH = -log [H⁺]
2 = -log [H⁺]
10^-2 = [H⁺]
<h3>0.01M = [H⁺]</h3>
Using Keq of water:
Keq = 1x10⁻¹⁴ = [H⁺] [OH⁻]
1x10⁻¹⁴ / 0.01M = [OH⁻]
<h3>1x10⁻¹²M = [OH⁻]</h3><h3 />
The ratio is:
[H⁺] / [OH⁻] = 0.01 / 1x10⁻¹² =
<h3>1x10¹⁰</h3>
<span>the balanced equation for the reaction is as follows
Na</span>₂<span>SO</span>₄<span> + BaCl</span>₂<span> ----> 2NaCl + BaSO</span>₄
<span>stoichiometry of Na</span>₂<span>SO</span>₄<span> to BaCl</span>₂<span> is 1:1
first we need to find out which the limiting reactant is
limiting reactant is fully used up in the reaction.
number of Na2So4 moles - 0.5 mol number of BaCl2 moles - 60 g / 208 g/mol = 0.288 mol
since molar ratio is 1:1 equal number of moles of both reactants should react with each other
therefore BaCl2 is the limiting reactant and Na2SO4 is in excess. amount of product formed depends on number of limiting reactant present.
stoichiometry of BaCl</span>₂<span> to BaSO</span>₄<span> is 1:1.
therefore number of BaSO4 moles formed - 0.288 mol</span>
Yeah what is the question