Answer is: theoretical molarity of water is 55.1222 mol/L.<span>
d(H</span>₂O) = 0.9922 g/mL.
M(H₂O) = 2 · Ar(H) + Ar(O) · g/mol.
M(H₂O) = 2 + 16 · g/mol = 18 g/mol.
c(H₂O) = d(H₂O) ÷ M(H₂O).
c(H₂O) = 0.9922 g/mL ÷ 18 g/mol.
c(H₂O) = 0.0551 mol/mL.
c(H₂O) = 0.0551 mol/mL · 1000 mL/L = 55.1222 mol/L.
Answer:
Glycogen in an important storage polysaccharide found in animal tissues.
Explanation:
Full question:
Glycogen ________
A) forms the regulatory molecules known as enzymes
B) serves as a structural component of human cells
C) helps to protect vital organs from damage
D) is an important storage polysaccharide found in animal tissues
E) contains the genetic information found in cells
Glycogen is a complex polysaccharide of glucose founded in humans, animals, fungi and even bacteria. In humans, the glycogen is made and stored in liver cells. In the center on glycogen molecule, there is a single protein called Glycogenin. It is a center of a big flower made of glucose molecules (please refer to the scheme attached - Glycogenin is red and the blue lines are glucose chains). Glycogen is also stored in skeletal muscle, red and white blood cells, in glial brain cells and kidneys but in a smaller amounts. It can be found in the placenta in pregnant women where it serves as a nutrient storage for embryo. In an adult, the liver weighs 1,5 kg and glycogen weighs about 120g in such a liver. After a meal, the level of sugar is rising and the insulin is being secreted. Insulin is a tool by which sugar is being delivered to the cells, like a food delivery. During this period, glycogen is being synthesized in the liver out of glucose residues. When the meal is digested, the sugar level is back to normal. When more energy is needed, glycogen from the liver is broken down by glycogen phosphorylase and the new sugar is released into the bloodstream.

Answer:- 14.9 M
Solution:- Given commercial sample of ammonia is 28% by mass. Let's say we have 100 grams of the sample. Then mass of ammonia would be 28 grams.
Density of the solution is given as 0.90 grams per mL.
From the mass and density we could calculate the volume of the solution as:

= 111 mL
Let's convert the volume from mL to L as molarity is moles of solute per liter of solution.
= 0.111 L
Now, we convert grams of ammonia to moles on dividing the grams by molar mass. Molar mass of ammonia is 17 gram per mole.

= 1.65 mole
To calculate the molarity we divide the moles of ammonia by the liters of solution:

= 14.9 M
So, the molarity of the given commercial sample of ammonia is 14.9 M.
10 or 30 grams
hope this help you
Answer:
Neutrons = 11
Explanation:
To get the number of neurons an element has you have to subtract the number of protons from the atomic mass of that element.
The number of protons is equal to the atomic number of that element.
Atomic number = Number of Protons
So the number of protons is 25
Neutrons = Atomic mass - Number of Protons
Neutrons = 36 - 25
Neutrons = 11