Answer:
d = 0.93 g/cm³
Explanation:
Given data:
Mass of object = 28 g
Volume of object = 3cm×2cm×5cm
density of object = ?
Solution:
Volume of object = 3cm × 2cm ×5cm
Volume of object = 30 cm³
Density of object:
d = m/v
by putting values,
d = 28 g/ 30 cm³
d = 0.93 g/cm³
<h3>
Answer:</h3>
Lead-205 (Pb-205)
<h3>
Explanation:</h3>
<u>We are given;</u>
We are supposed to identify its product after an alpha decay;
- Polonium-209 has a mass number of 209 and an atomic number of 84.
- When an element undergoes an alpha decay, the mass number decreases by 4 while the atomic number decreases by 2.
- Therefore, when Po-209 undergoes alpha decay it results to the formation of a product with a mass number of 205 and atomic number of 82.
- The product from this decay is Pb-205, because Pb-205 has a mass number of 205 and atomic number 82.
- The equation for the decay is;
²⁰⁹₈₄Po → ²⁰⁵₈₂Pb + ⁴₂He
- Note; An alpha particle is represented by a helium nucleus, ⁴₂He.
<span>Balancing is making sure there are the same number of atoms on either side of the reaction.
Pb(NO3)2 + Li2SO4--> PbSO4 + LiNO3
There are 2 NO3 groups and 2 Li on the right side, need 2 on the left side.
Need a coefficient of 2 for LiNO3
</span>
Using a calculator:
(2.568 x 5.8)/4.186 = 3.5581460…
= 3.56 (3sf)
You didn’t specify the correct number of significant figures needed.
The molecule with same molecular formula but different arrangement of atoms is said to be an isomer.
When 2,2-dimethylbutane reacts with chlorine in the presence of light gives three isomers that is
(3-chloro-2,2-dimethylbutane),
(1-chloro-2,2-dimethylbutane) and
(1-chloro-3,3-dimethylbutane).
In above case, the molecular formula of all isomers are same i.e.
but chlorine is arranged in different positions of carbon. Thus, results isomers.
The reaction is shown in the image.