Displacement = (straight-line distance between the start point and end point) .
Since the road east is perpendicular to the road north,
the car drove two legs of a right triangle, and the magnitude
of its final displacement is the hypotenuse of the triangle.
Length of the hypotenuse = √ (215² + 45²)
= √ (46,225 + 2,025)
= √ 48,250
= 219.7 miles .
Answer:
so initial speed of the rock is 30.32 m/s
correct answer is b. 30.3 m/s
Explanation:
given data
h = 15.0m
v = 25m/s
weight of the rock m = 3.00N
solution
we use here work-energy theorem that is express as here
work = change in the kinetic energy ..............................1
so it can be written as
work = force × distance ...................2
and
KE is express as
K.E = 0.5 × m × v²
and it can be written as
F × d = 0.5 × m × (vf)² - (vi)² ......................3
here
m is mass and vi and vf is initial and final velocity
F = mg = m (-9.8) , d = 15 m and v{f} = 25 m/s
so put value in equation 3 we get
m (-9.8) × 15 = 0.5 × m × (25)² - (vi)²
solve it we get
(vi)² = 919
vi = 30.32 m/s
so initial speed of the rock is 30.32 m/s
Answer:
(a) 
(b) The charge inside the shell is placed at the center of the sphere and negatively charged.
Explanation:
Gauss’ Law can be used to determine the system.

This is the net charge inside the sphere which causes the Electric field at the surface of the shell. Since the E-field is constant over the shell, then this charge is at the center and negatively charged because the E-field is radially inward.
The negative charge at the center attracts the same amount of positive charge at the surface of the shell.
Given :
A race car moves along a circular track of radius 100m at a velocity of 25m/s.
To Find :
(a) What is the time taken to complete one lap of the circular track.
(b) What is the time taken for 10 laps.
Solution :
Circumference of circular track,

a) Time taken to complete one lap is :

b) Time taken to complete 10 laps is :

Hence, this is the required solution.