Floating. When you have no gravity you have nothing to be pushing you down to the floor so that would be an example of no gravity pushing on you.
Answer:
It slowly decreases and the friction acting on it slowing it down becomes the bigger net force, if that makes sense :)
Explanation:
The answer is 0.245N.
<h3>What is kinetic energy?</h3>
- A particle or an item that is in motion has a sort of energy called kinetic energy. An item accumulates kinetic energy when work, which involves the transfer of energy, is done on it by exerting a net force.
- Kinetic energy comes in five forms: radiant, thermal, acoustic, electrical, and mechanical.
- The energy of a body in motion, or kinetic energy (KE), is essentially the energy of all moving objects. Along with potential energy, which is the stored energy present in objects at rest, it is one of the two primary types of energy.
- Explain that a moving object's mass and speed are two factors that impact the amount of kinetic energy it will possess.
(b) 0.100
For the block on the left, 
∑
=
–0.308N+0.245N=(0.250kg)a
a=−0.252
if the force of static friction is not too large.
For the block on the right,
=
=0.490N. The maximum force of static friction would be larger, so no motion would begin, and the acceleration is zero
To learn more about kinetic energy, refer to:
brainly.com/question/25959744
#SPJ4
As you coast down a long hill on your bicycle, potential energy from your height is converted to kinetic energy as you and your bike are pulled downward by gravity along the slope of the hill. While there is air resistance and friction slowing you down by a little bit, your speed increases gradually until you apply the brakes, causing enough friction to slow yourself and the bike to a stop at the bottom.
A roller coaster will have higher kinetic energy at the lower hill because it will have already been moving as opposed to the initial hill. But I'm not one hundred percent certain. You can always google this stuff, but I do know for sure that at the first hill, the roller coaster will have higher potential energy.
Hope this helps!
Explanation:
If two particles are involved in an elastic collision, the velocity of the second particle after collision can be expressed as: v2f=2⋅m1(m2+m1)v1i+(m2−m1)(m2+m1)v2i v 2 f = 2 ⋅ m 1 ( m 2 + m 1 ) v 1 i + ( m 2 − m 1 ) ( m 2 + m 1 ) v 2 i .