First we will use the concepts of motion kinetics for which the final speed is defined as shown below,

Here,
= Final velocity
= Initial velocity
a = Acceleration
s = Distance
Replacing,


Using the conservation of energy for kinetic energy we have,



Therefore the kinetic energy of the car is 31900J
With a small magnet with a generator it will be taken up quickly because how small it is while with a big generator it would take more force for it for the generator to attach because the larger the magnet that heavier it will be because it is attached to the North Pole magnet
Answer:
d = 105 m
Explanation:
Speed of a car, v = 21 m/s
We need to find the distance traveled by the dar during those 5 s before it stops. Let the distance is d. It can be calculated as :
d = v × t
d = 21 m/s × 5 s
d = 105 m
So, it will cover 105 m before it stops.
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is

where D=5.00 m is the distance of the screen from the slits, and

is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:

And from the relationship between frequency and wavelength,

, we can find the frequency of the light: