1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GuDViN [60]
1 year ago
5

A transverse wave on a string is described by the wave functiony(x, t) = 0.350 sin (1.25x + 99.6t)where x and y are in meters an

d t is in seconds. Consider the element of the string at x=0 . (a) What is the time interval between the first two instants when this element has a position of y=0.175 m?
Physics
1 answer:
ella [17]1 year ago
7 0

The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.

<h3>How to solve for the time interval</h3>

We have y = 0.175

y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175

sin (1.25x + 99.6t) = 0.175

sin (1.25x + 99.6t) = 0.5

99.62 = pi/6

t1 = 5.257 x 10⁻³

99.6t = pi/6 + 2pi

= 0.0683

The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.

b. we have k = 1.25, w = 99.6t

v = w/k

99.6/1.25 = 79.68

s = vt

= 79.68 * 0.0683

= 5.02

Read more on waves here

brainly.com/question/25699025

#SPJ4

complete question

A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?

You might be interested in
A standard for comparison is called a frame of reference<br>True or False​​
kramer

Answer:

TRUE.

Explanation:

7 0
2 years ago
Read 2 more answers
A 5.0 Ω resistor is hooked up in series with a 10.0 Ω resistor followed by a 20.0 Ω resistor. The circuit is powered by a 9.0 V
yan [13]
<h2>Answer:</h2>

(a) Attached to the response as Figure 1.

(b) 35.0Ω

(c) Across 5.0Ω = 1.3V

   Across 10.0Ω = 2.6Ω

   Across 20.0Ω = 5.2Ω

<h2>Explanation:</h2>

(a) The labelled circuit using the correct symbols (for the resistors and battery) has been attached to this response.

(b) Since the resistors are hooked up in series, their equivalent resistance R, is found by adding the individual resistances of the resistors (R₁, R₂ and R₃). i.e

R = R₁ + R₂ + R₃               -------------------(i)

Where;

R₁ = 5.0 Ω

R₂ = 10.0 Ω

R₃ = 20.0 Ω

<em>Substitute these values into equation (i) as follows;</em>

∴ R = 5.0 Ω + 10.0 Ω + 20.0 Ω

∴ R = 35.0 Ω

Therefore, the equivalent resistance is ∴ R = 35.0Ω

(c) When resistors are connected in series, the same current passes through them. To get the current through each resistor;

i. First, replace the resistors by their equivalent resistor as calculated above. The diagram has been attached to this response.

ii. As seen in the diagram, the current flowing through the equivalent resistor can be calculated using Ohm's law as follows;

V = I R              ------------------(ii)

Where;

V = Voltage supplied to the circuit = 9.0V

I = Current through the circuit

R = Resistance of the equivalent resistor = 35.0Ω

Substitute these values into equation (ii)

9.0 = I x 35.0

I = \frac{9.0}{35.0}

I = 0.26A

This is also the current flowing through each of the resistors separately.

iii. Calculate the voltage drop across

1.<em> 5.0 Ω resistor</em>

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 5.0Ω resistor

I = current through the 5.0Ω resistor = 0.26A

R = resistance of the 5.0Ω resistor = 5.0Ω

=> V = 0.26 x 5.0

=> V = 1.3V

2.<em> 10.0 Ω resistor</em>

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 10.0Ω resistor

I = current through the 10.0Ω resistor = 0.26A

R = resistance of the 10.0Ω resistor = 10.0Ω

=> V = 0.26 x 10.0

=> V = 2.6V

3.<em> 20.0 Ω resistor</em>

Applying Ohm's law from equation (ii)

V = I x R

Where;

V = voltage drop across the 20.0Ω resistor

I = current through the 20.0Ω resistor = 0.26A

R = resistance of the 20.0Ω resistor = 10.0Ω

=> V = 0.26 x 20.0

=> V = 5.2V

7 0
3 years ago
A joule is a unit of work is equal to ____?
Artemon [7]
Work is defined as a Newton * meter.

8 0
3 years ago
Read 2 more answers
The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving ele
siniylev [52]

The valence electrons of metals are weakly attracted to the parent nuclei, so the electrons break free and float. The moving electrons form a electron <u>negative</u> blanket that binds the atomic <u>positive</u> nuclei together, forming a metallic bond.

So the answers are <u>{ Negative }</u> and <u>{ Positive }.</u>  

Please vote Brainliest (:

5 0
3 years ago
Read 2 more answers
Why would genetic material need to be able to reproduce
Lynna [10]
So that the next generation could inherit the previous adaptations and instinct and be similar to the parents. if that didn't happen, a cat might give birth to a giraffe
7 0
3 years ago
Other questions:
  • A ball is dropped from a height of 2 m. how long will it take this ball to reach the ground?
    13·1 answer
  • The nucleus of an atom consists of neutrons and electrons. tf
    7·2 answers
  • a fisherman hooks a trout and reels in his line at speed of 4 inches/second. assume tip of fishing rod is 12 ft above the water
    13·2 answers
  • Which of the following is true
    14·2 answers
  • What type of weather is associated with a stationary front
    5·1 answer
  • To make yourself some coffee, you put one cup of water (246 gg ) in a small pot on the stove. Part A What quantity of energy mus
    11·1 answer
  • What is the simple average of these two velocities (0m/s, 0.4m/s)​
    15·1 answer
  • 12) Water flows through a horizontal pipe of cross-sectional area 10.0 cm2 at a pressure of 0.250 atm with a flow rate is 1.00 L
    5·1 answer
  • What is the material ability to be desolved in a solvent
    9·2 answers
  • In a simple 2-bulb series circuit, why does the bulb light when you close the switch?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!