Answer:
The weigth of a 90kg man standing on the moon is <u><em>147.6 N (option C)</em></u>
Explanation:
Weight is called the action exerted by the force of gravity on the body.
The mass (amount of matter that a body contains) of an object will always be the same, regardless of where it is located. Instead, the weight of the object will vary according to the force of gravity acting on it.
The formula that allows you to calculate the weight of any body is:
W = m*g
where:
- W = weight measured in N.
- m = mass measured in kg.
- g = acceleration of gravity measured in m/s². The acceleration of gravity g is the same for all objects that fall due to gravitational attraction, whatever their size or composition. For example, as an approximate value on Earth, g = 9.8 m/s².
In this case, the mass m has a value of 90 kg and the gravity g has a value of 1.64 m/s², which is the value of the acceleration of gravity of the moon. Then:
W=90 kg* 1.64 m/s²
<u><em>W= 147.6 N</em></u>
Finally, <u><em>the weigth of a 90kg man standing on the moon is 147.6 N (option C)</em></u>
louder sounds
Explanation:
Resonance results in louder sounds.
Resonance is a phenomenon that produces a large vibration as a result of smaller vibration that causes the resonating body to vibrate at its own natural frequency.
Resonance results in sound amplification and causes louder sounds. Increasing vibration results in the production of a louder sound.
Learn more:
Resonance in chemistry brainly.com/question/9422880
#learnwithBrainly
The answer is c hopefully I helped you
Answer: E. none of these
Explanation: because the f-block element is n-2
Answer:
in nuclear fusion deep in the interiors of stars
Explanation:
Nuclear fusion -
It is the type of reaction , where two or more atomic nuclei of the atom merges together to release two or more different nuclei along with some subatomic particles , is referred to as a nuclear fusion reaction .
The reaction can very well be done on stars , because of very high energy .
Hence , a nuclear fusion occurs deep inside the stars .