Answer:
V = 3.54 m/s
Explanation:
Using the conservation of energy:

so:

where w is te weigh of kelly, h the distance that kelly decends, m is the mass of kelly and V the velocity in the lowest position.
So, the mass of kelly is:
m = 425N/9.8 = 43.36 Kg
and h is:
h = 1m-0.36m =0.64m
then, replacing values, we get:

Solving for v:
V = 3.54 m/s
The period of oscillation is T = 2 * pi * sqrt ( ( m2/3 + m1) / k )
<h3>What is period of oscillation?</h3>
This is the time in seconds it takes to complete one oscillation. where an oscillation is a repetitive to and fro motion. period if the inverse of frequency and both are basic when calculation motion in simple harmonic motion.
The period of oscillation is given as T
T = 2 * pi * sqrt ( m / k )
where
m = mass on this case mass of the spring will be inclusive to the mass of the block such that we have:
m1 = mass of the block
m2 = mass pf the spring
k = force constant of the spring
including the two masses to the period gives
T = 2 * pi * sqrt ( ( m2/3 + m1) / k )
Read more on period of oscillation here: brainly.com/question/22499336
#SPJ4
Answer:
It is C on edge.
Explanation:
Because I just figured it out and got it right and because it says so in the link provided from the question.
Answer:
The net force applied to the car is zero.
Explanation:
We are given that a car is moving to the left with constant velocity.
When the car moving with constant velocity
Then, the final velocity=Initial velocity
Change in velocity=Final velocity- initial velocity=0
When change in velocity is zero then , acceleration of car

When acceleration is zero then, By Newtons second law

The net force applied on the car will be zero.
Option C:The net force applied to the car is zero.