Answer:
For this angular momentum, no quantum number exist
Explanation:
From the question we are told that
The magnitude of the angular momentum is 
The generally formula for Orbital angular momentum is mathematically represented as

Where
is the quantum number
now
We can look at the given angular momentum in this form as

comparing this equation to the generally equation for Orbital angular momentum
We see that there is no quantum number that would satisfy this equation
Answer:

Explanation:
To convert from moles to grams, we must use the molar mass.
Recall that water's molecular formula is H₂O. It contains hydrogen and oxygen. Look up the two elements masses on the Periodic Table.
- Hydrogen (H): 1.008 g/mol
- Oxygen (O): 15.999 g/mol
Now, use these masses to find water's mass. The subscript of 2 tells us there are 2 atoms of hydrogen, so we multiply hydrogen's mass by 2 and add oxygen's.
- H₂O= 2(1.008 g/mol) + 15.999 g/mol = 18.015 g/mol
Use the molar mass as a ratio.

Multiply by the given number of moles.

The moles of water will cancel.



Round to the nearest whole number. The 0 in the tenth place tells us to leave the number as is.

There are about <u>54 grams</u> of water in 3 moles.
Explanation:
The important quantum-mechanical concepts associated with the Bohr model of atom are :
1. Electrons are nothing but particles that revolve around the nucleus in discrete orbitals.
2. Energy is associated with each orbital is quantised. Meaning electron in each shell will have energy in multiple of a fixed quanta.
<span>The pairs of substances I would expect to form homogeneous solutions when combined will form a homogeneous because both are polar and form dispersion forces, dipole-dipole and hydrogen bonding between the water molecules and ion-dipole forces between the K+ and Cl- ions and the water molecules.</span>
Answer:
The
of a substrate will be "10 μM".
Explanation:
The given values are:

![[Substract] = 40 \ \mu M](https://tex.z-dn.net/?f=%5BSubstract%5D%20%3D%2040%20%5C%20%5Cmu%20M)

Reaction velocity, 
As we know,
⇒ ![Vo=\frac{K_{cat}[E_{t}][S]}{K_{m}+[S]}](https://tex.z-dn.net/?f=Vo%3D%5Cfrac%7BK_%7Bcat%7D%5BE_%7Bt%7D%5D%5BS%5D%7D%7BK_%7Bm%7D%2B%5BS%5D%7D)
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
On subtracting "40" from both sides, we get
⇒ 
⇒ 