<h3><u>Answer;</u></h3>
Find the number of 1-foot cubes that fill the fish tank
<h3><u>Explanation;</u></h3>
Volume of a cuboid such as the fish tank is given by the product of length width and height;
Such that; Volume = length × width × height
Similarly, we can count the number of 1 foot cube that can fill the fish tank.
And since each cube has a volume of 1 cubic ft, then the number of cubes will be equivalent to the volume of the fish tank in cubic ft.
Answer:

Explanation:
Hello!
In this case, since a dilution process implies that the moles of the solute remain the same before and after the addition of diluting water, we can write:

Thus, since we know the volume and concentration of the initial sample, we compute the resulting concentration as shown below:

Best regards!
Answer:
V = 81.14 L
Explanation:
Given data:
Volume of gas = ?
Number of moles = 3.30 mol
Temperature of gas = 25°C
Pressure of gas = 0.995 atm
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Now we will convert the temperature.
25+273 = 298 K
now we will put the values in formula:
V = 3.30 mol 0.0821 atm.L/ mol.K 298 K / 0.995 atm
V = 80.74 L. atm / 0.995 atm
V = 81.14 L
The action or power of focusing one's attention or mental effort.
a substance produced by a living organism that acts as a catalyst to bring about a specific biochemical reaction.
a substance that slows down or prevents a particular chemical reaction or other process, or that reduces the activity of a particular reactant, catalyst, or enzyme.
Answer:
A.
Explanation:
Using the ideal gas equation, we can calculate the number of moles present. I.e
PV = nRT
Since all the parameters are equal for both gases, we can simply deduce that both has the same number of moles of gases.
The relationship between the mass of each sample and the number of moles can be seen in the relation below :
mass in grammes = molar mass in g/mol × number of moles.
Now , we have established that both have the same number of moles. For them to have the same mass, they must have the same molar masses which is not possible.
Hence option A is wrong