Answer:
165.726 g.
Explanation:
- For the balanced equation:
<em>Cr₂O₃ + 3H₂S → Cr₂S₃ + 3H₂O,</em>
It is clear that 1 mol of Cr₂O₃ and 3 mol of H₂S to produce 1 mol of Cr₂S₃ and 3 mol of H₂O.
- Firstly, we need to calculate the no. of moles of 324.8 g of chromium(III) sulphide:
no. of moles of Cr₂S₃ = mass/molar mass = (324.8 g)/(200.19 g/mol) = 1.62 mol.
- Now, we can find the "no. of grams" of H₂S are needed:
<u><em>Using cross multiplication:</em></u>
3 mol of H₂S produces → 1 mol of Cr₂S₃, from stichiometry.
??? mol of H₂S produces → 1.62 mol of Cr₂S₃.
∴ The no. of moles of H₂S are needed = (3 mol)(1.62 mol)/(1 mol) = 4.86 mol.
∴ The "no. of grams" of H₂S are needed = (no. of moles of H₂S)(molar mass of H₂S) = (4.86 mol)(34.1 g/mol) = 165.726 g.
I found another question like this. Someone answered "The best answer to this question is adding a catalyst.
Adding a catalyst will cause the greatest increase in the rate of reaction for this chemical reaction , 8Zn(s) + S8(s) 8ZnS(s). ---> adding a catalyst always affects the rate of a reaction."
Answer:
5.6 L
Explanation:
We can apply Charles' Law here since our pressure is constant (will not change inside the refrigerator) and we are relating change in volume with change in temperature:
V₁ / T₁ = V₂ / T₂ where V₁ and T₁ are initial volume and temperature, and V₂ and T₂ are final volume and temperature. Let's plug in what we know and solve for the unknown:
28.0 L / 25 °C = V₂ / 5 °C => V₂ = 5.6 L
5.6 L is our new volume (at 5 °C).
The forces of attraction between particles in their gaseous state seems to be nonexistential.
therefore scientist would care less. however another state after gas which is plasma has a lesser force of attraction than the gaseous state.
No because it burns the food that u had and leaves it more space?????? I