Answer:
Its mechanical energy is the same.
Explanation:
If forces are only conservative, the mechanical energy will be the same.
It can be different if energy get transformed in another kind of energy like elastic energy for example, although the amount of energy is always the same.
If we just have mechanical energy not geting transformed we have:
Em=K+U
Em: Mechanical energy
K: Kinetic energý
U: Potential energy
Then if Kinetic energy decreases 10J, Potential energy will grow up 10J to keep the same amount of mechanical energy.
Answer:

Explanation:
The two cars are under an uniform linear motion. So, the distance traveled by them is given by:

is the same for both cars when the second one catches up with the first. If we take as reference point the initial position of the second car, we have:

We have
. Thus, solving for t:

Answer:
(a) 21.36 ohms
(b) 5.62 A
Explanation:
Parameters given:
Potential difference, V = 120 V
Power, P = 674 W
(a) Power is given as:
P = V²/R
Where R is resistance
=> R = V²/P
R = 120²/674
R = 14400/674
R = 21.36 ohms
(b) Power is also given as:
P = I*V
Where I = Current (time rate of flow of Electric charge)
=> I = P/V
I = 674/120
I = 5.62 A
Acceleration is not the same as speeding up. It refers to any modification of motion's direction or speed. Accelerated motion is any movement that is not constant speed in a straight line.
<h3>What is meant by acceleration?</h3>
The rate at which an object's velocity for time changes is referred to as acceleration in mechanics. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration.
An object's velocity can alter depending on whether it moves faster or slower or in a different direction. A falling apple, the moon orbiting the earth, and a car stopped at a stop sign are a few instances of acceleration.
The rate at which velocity changes is called acceleration. Acceleration typically indicates a change in speed, but not necessarily. An item that follows a circular course while maintaining a constant speed is still moving forward because the direction of its motion is shifting.
To learn more about acceleration refer to:
brainly.com/question/605631
#SPJ4
Answer:

Explanation:
In an ideal transformer, the ratio of the voltages is proportional to the ratio of the number of turns of the windings. In this way:

In this case:

Therefore, using the previous equation and the data provided, let's solve for
:

Hence, the number of loops in the secondary is approximately 41667.