Answer:
B. Warm water rises within the pot.?
Explanation
<em>There wasn't enough information given for me to safely determine the correct answer.</em>
Answer:
large, released
Explanation:
As we know, fireworks contain l o t s of energy, even before the burst of colors release. So i think choice 3 is the answer.
i hope this helps :)
Ionization Energy: DOWN a Group: Ionization energy DECREASES as you go DOWN a Group because the farther the valence electrons are from the nucleus (pulling power of the protons) the less energy it costs another atom to steal them
<span>C is the correct answer. Elements in the periodic table are grouped based on having similar properties. For example, the noble gases are all non-reactive and non-metallic. The electronic structure of an atom is the way the electrons are arranged within it, and this affects where they are located in the periodic table. The number of electrons in an element is the same as its group number in the periodic table (with the exception of Group 0).</span>
Answer:
a) 
b) 
Explanation:
Equation of reaction:

Initial pressure 3 1 0
Pressure change 2P 1P 2P
Total pressure = (3-2P) + (1-P) + (2P)
Total Pressure = 3.75 atm
(3-2P) + (1-P) + (2P) = 3.75
4 - P = 3.75
P = 4 - 3.75
P = 0.25 atm
Let us calculate the pressure of each of the components of the reaction:
Pressure of XO2 = 3 - 2P = 3 - 2(0.25)
Pressure of XO2 =2.5 atm
Pressure of O2 = 1 - P = 1 -0.25
Pressure of O2 = 0.75 atm
Pressure of XO3 = 2P = 2 * 0.25
Pressure of XO3 = 0.5 atm
From the reaction, equilibrium constant can be calculated using the formula:
![K_{p} = \frac{[PXO_{3}] ^{2} }{[PXO_{2}] ^{2}[PO_{2}] }](https://tex.z-dn.net/?f=K_%7Bp%7D%20%3D%20%5Cfrac%7B%5BPXO_%7B3%7D%5D%20%5E%7B2%7D%20%7D%7B%5BPXO_%7B2%7D%5D%20%5E%7B2%7D%5BPO_%7B2%7D%5D%20%7D)

Standard free energy:

b) value of k−1 at 27 °C, i.e. 300K


