What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
If a body p with a positive charge is placed in contact with a body q (initially uncharged), then the nature of charge gained by q must be positive, because rubbing an uncharged body with a charged body or placed in contact with a positive charged body, helps gain a charge to the uncharged body.
There are a variety of methods to charge an object. One method is known as induction. In the induction process, a charged object is brought near but not touched to a neutral conducting object.
Let's know, how a element gain positive charge?
A positive charge occurs when the number of protons exceeds the number of electrons. A positive charge may be created by adding protons to an atom or object with a neutral charge. A positive charge also can be created by removing electrons from a neutrally charged object.
To learn more about Positive charge here
brainly.com/question/2903220
#SPJ4
The actual answer is B) Chlorine
According to the Bohr Model diagram, the atom has seventeen electrons. This makes it Chlorine.
Sorry if i'm late!!
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v:
<u>Weight = (mass) x (acceleration of gravity)</u>
Divide each side by (mass),and we have
Acceleration of gravity = (weight) / (mass)
Acceleration of gravity = 2,970/90 = 33 newtons per kilogram = <em>33 m/s²</em>