Well newton's law is esstenaily how gravity works. so the force in this case water moves, the more the object (sediment) will go farther. And when the force is lessened the object will eventually come to a dead stop.
Answer:
Torque, 
Explanation:
Given that,
The number of turns in the coil, N = 47.5
Radius of the coil, r = 5.25 cm
Uniform magnetic field, B = 0.535 T
Current in the coil, I = 26.9 mA
The magnitude of the maximum possible torque exerted on the coil isg given by :

So, the magnitude of the maximum possible torque exerted on the coil is
.
<span>Answer:
For Lewis theory, the most stable species will have a complete octet for as many atoms as possible. Construct Lewis dot structures for each species. You should see that CN+ cannot give a complete octet to the C atom unless a quadruple bond - unknown except in transition metals - is formed. CN will have an odd number of electrons, and is thus a free radical and unstable with respect to dimerization (it forms cyanogen). CN-, the familiar cyanide ion, gives both C and N a complete octet with a triple bond, and is thus the most stable.
Molecular orbital theory is a bit more complex. Nitrogen and carbon are close enough in electronegativity, so the orbitals from the C atom will mix with the same orbitals from the N atom. The molecular orbitals formed will be sigma2s, sigma*2s, pi2p, sigma2p, pi*2p, and sigma*2p. The * denotes an antibonding orbital; these are higher in energy, and electrons placed into these orbitals weaken the bonding between two atoms. CN+ will completely fill the sigma2s, sigma*2s, and pi2p orbitals. CN will add an electron in the bonding sigma2p orbital, and the atoms are thus more strongly bonded than in CN+. CN- fills the sigma2p orbital, and the addition of another bonding electron means that this species has the strongest bond of the three. I might have the names of some of the filled levels incorrect; the energy levels of the sigma2p and pi2p swap at some point. This concept is hard to explain without a picture; see the link.
Thus, both MO and Lewis theory predict CN- as the most stable species, a prediction that matches well with experimental data.</span>
Answer:
uk = 0.25
Explanation:
Given:-
- An object comes to stop with acceleration, a = -2.45 m/s^2
Find:-
What is the coefficient of kinetic friction between the object and the floor?
Solution:-
- Assuming the object has mass (m) that slides over a rough surface with coefficient of kinetic friction (uk). There is only Frictional force (Ff) acting in the horizontal axis on the object opposing the motion (-x direction).
- We will apply equilibrium equation on the object in vertical direction.
N - m*g = 0
N = m*g
Where, N : Contact force exerted by the surface on the floor
g : Gravitational acceleration constant = 9.81 m/s^2
- Now apply Newton's second law of motion in the horizontal ( x-direction ):
- Ff = m*a
- The frictional force is related to contact force (N) by the following expression:
Ff = uk*N
- Substitute the 1st and 3rd expressions in the 2nd equation:
uk*m*g = -m*a
uk = a / g
- Plug in the values and solve for uk:
uk = - (-2.45) / 9.81
uk = 0.25
Cancer-causing agents are also called <span>carcinogens</span>