<span>a = 25-13/6 = 12/6 = 2 m/s^2
Av speed: 25+13/2 = 38/2 = 19 m/sec
Dist = speed * time
19 * 6 = 114 meters</span>
Answer:
Yes, it is reasonable to neglect it.
Explanation:
Hello,
In this case, a single molecule of oxygen weights 32 g (diatomic oxygen) thus, the mass of kilograms is (consider Avogadro's number):

After that, we compute the potential energy 1.00 m above the reference point:

Then, we compute the average kinetic energy at the specified temperature:

Whereas
stands for the Avogadro's number for which we have:

In such a way, since the average kinetic energy energy is about 12000 times higher than the potential energy, it turns out reasonable to neglect the potential energy.
Regards.
We can use the equation vf (the final velocity) =vi (the initial velocity) +at (aceleration times time)
We know the final velocity 100m/s, the initial velocity 0, and the acceleration (gravity) 9.8m/s^2. So, 100=0+9.8t. t=100/9.8