Assuming that all energy of the small ball is transferred
to the bigger ball upon impact, then we can say that:
Potential Energy of the small ball = Kinetic Energy of
the bigger ball
Potential Energy = mass * gravity * height
Since the small ball start at 45 cm, then the height
covered during the swinging movement is only:
height = 50 cm – 45 cm = 5 cm = 0.05 m
Calculating for Potential Energy, PE:
PE = 2 kg * 9.8 m / s^2 * 0.05 m = 0.98 J
Therefore, maximum kinetic energy of the bigger ball is:
<span>Max KE = PE = 0.98 J</span>
This question is written wrong, I think u meant 20 kg?
Answer:
0.8c and -0.14c
Explanation:
The first fragment will have a speed of +0.5c respect of a frame of reference moving at +0.5c
Lest name v the velocity of the frame of reference, and u' the velocity of the object respect of this moving frame of reference.
The Lorentz transform for velocity is:
u = (u' + v) / (1 + (u' * v) / c^2)
u = (0.5c + 0.5c) / (1 + (0.5c * 0.5c) / c^2) = 0.8c
The other fragment has a velocity of u' = -0.6c respect of the moving frame of reference.
u = (-0.6v + 0.5c) / (1 + (0.5c * 0.5c) / c^2) = -0.14c
The spring constant will be k= 5.5N/m for a 200g air track glider attached to a spring.
<h3>What is spring constant?</h3>
The spring constant, k, is a measure of the stiffness of the spring. It is different for different springs and materials.
Calculation for What is the spring constant
First step is to calculate the time period
T = 12 second/10
T = 1.2 second
Now let calculate the spring constant using this formula

Where,
m=0.2kg
T=1.2second
k represent spring constant=?
Let plug in the formula



k=5.48 N/m
k=5.5 N/m ( Approximately)
Therefore the spring constant will be 5.5 N/m
To know more about spring constant follow
brainly.com/question/1968517
#SPJ4
KE = 2000 J
Explanation:
KE = (1/2)mv^2
= (1/2)(0.100 kg)(200 m/s)^2
= 2000 J