Complete Question:
A machinist turns the power on to a grinding wheel, which is at rest at time t = 0.00 s. The wheel accelerates uniformly for 10 s and reaches the operating angular velocity of 25 rad/s. The wheel is run at that angular velocity for 37 s and then power is shut off. The wheel decelerates uniformly at 1.5 rads/s2 until the wheel stops. In this situation, the time interval of angular deceleration (slowing down) is closest to
Answer:
t= 16.7 sec.
Explanation:
As we are told that the wheel is accelerating uniformly, we can apply the definition of angular acceleration to its value:
γ = (ωf -ω₀) / t
If the wheel was at rest at t-= 0.00 s, the angular acceleration is given by the following equation:
γ = ωf / t = 25 rad/sec / 10 sec = 2.5 rad/sec².
When the power is shut off, as the deceleration is uniform, we can apply the same equation as above, with ωf = 0, and ω₀ = 25 rad/sec, and γ = -1.5 rad/sec, as follows:
γ= (ωf-ω₀) /Δt⇒Δt = (0-25 rad/sec) / (-1.5 rad/sec²) = 16.7 sec
Answer:
(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz
(b) 250 m/s
(c) 1250 N
(d) Positive x-direction
(e) 6.00 m/s
(f) 0.0365 m
Explanation:
(a) The standard form of the wave is:
y = A cos ((2πf) t ± (2π/λ) x)
where A is the amplitude, f is the frequency, and λ is the wavelength.
If the x term has a positive coefficient, the wave moves to the left.
If the x term has a negative coefficient, the wave moves to the right.
Therefore:
A = 0.0800 m
2π/λ = 0.300 m⁻¹
λ = 20.9 m
2πf = 75.0 rad/s
f = 11.9 Hz
(b) Velocity is wavelength times frequency.
v = λf
v = (20.9 m) (11.9 Hz)
v = 250 m/s
(c) The tension is:
T = v²ρ
where ρ is the mass per unit length.
T = (250 m/s)² (0.0200 kg/m)
T = 1250 N
(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).
(e) The maximum transverse speed is Aω.
(0.0800 m) (75.0 rad/s)
6.00 m/s
(f) Plug in the values and find y.
y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))
y = 0.0365 m
Answer:

Explanation:
K = Kinetic energy
= Perigee speed = 4280 m/s
= Apogee speed = 3990 m/s
= Perigee Distance = 22500000 m
= Apogee Distance = 24100000 m
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of Earth
m = Mass of satellite
In this system the kinetic and potential energies are conserved

The mass of the Earth is 
Well most of the earth's oxygen resides in mineral oxides of the crust. a small fraction resides in the atmosphere and an even smaller fraction resides in the biosphere. still the biosphere is crucial to understanding the atmospheric oxygen budget as it controls short term exchanges between sediments and the atmosphere.
Answer:
177.213 grams
Explanation:
Given:
Total amount of water = 364 grams
Latent heat of fusion = 333 kJ/kg
Heat transferred = 62.2 kJ
The amount of water frozen = 62.2/333 = 0.186786 kg = 186.786 grams
Hence, the amount of water remained unfrozen = Total water - Amount of water frozen
the amount of water remained unfrozen = 364 grams - 186.786 grams = 177.213 grams