|V| = 10.33 units and the direction θ = -47.35° or 312.65°.
Given the x and y components of a vector, we can calculate the magnitude and direction from these components.
Applying the Pythagorean theorem we have that the magnitude of the vector is:
|V| = 
|V| = 
The expression for the direction of a vector comes from the definition of the tangent of an angle:
tan θ =
------> θ = arc tan 
θ = arc tan 
θ = -47.35° or 312.65°
Answer:
14.04 m/s
Explanation:
To find the velocity of the first car after the collision, we can use the equation of conservation of momentum:
m1v1 + m2v2 = m1'v1' + m2'v2'
We have the following data:
m1 = m1' = 328,
m2 = m2' = 790,
v1 = 19.1,
v2 = 13,
v2' = 15.1.
Using this data, we can find v1' (final velocity of the first car):
328 * 19.1 + 790 * 13 = 328 * v1' + 790 * 15.1
16534.8 = 328 * v1' + 11929
328 * v1' = 4605.8
v1' = 14.04 m/s