sodium ions and chloride ions
Answer:
Transition Metals
Explanation:
The elements in groups 3-12 are called Transition Metals. These groups contain metals that usually form multiple cations. All other groups on the table (1, 2, 13-18) are called Main Group Elements.
An example can be perspiration or even rain.
Hope this helps.
Answer: The actions that must have affected the igneous rock in order to form the sedimentary rock is that (It must have been broken down into sediments).
Explanation:
Rocks are solid structures that occurs naturally which is made up of different minerals. There are three main types of rocks, these includes:
--> METAMORPHIC ROCKS: These are the type of rocks which are formed by temperature and pressure changes inside the Earth.
--> SEDIMENTARY ROCKS: these rocks are usually formed from pre-existing rocks through the process of weathering (breaking down) of rocks.
--> IGNEOUS ROCKS: these rocks are formed when molten magma cools beneath or above the earth surface.
The actions that must have affected the igneous rock in order to form the sedimentary rock is that the igneous rocks are broken down into smaller pieces by erosion and weathering processes. Sediments which are formed accumulates at the earth surface. Over a long period of time, these sediments builds successive layers on top of one another. The sediments near the base hardens to form sedimentary rocks. This justifies the statement as a correct option (It must have been broken down into sediments).
Answer:
See the answer below
Explanation:
Even though plants are rooted in the ground, they still move, exert <u>force,</u> and do<u> work</u>.
Plant cells have very strong cell walls that allow <u>pressure</u> to build up inside of the cell as water is absorbed. This pressure is called <u>turgor</u>.
When turgor pressure is high enough in a cell, the cell walls become <u>firm</u> and as a result, the cell becomes rigid and the plant is able to stand <u>tall</u> and<u> straight</u>.
When a plant does not get enough water, the turgor pressure inside of the cells <u>decreases.</u> A decrease in <u>pressure</u> pushing against the cell wall causes the cells to lose their <u>shape</u> and <u>shrink</u>. This causes the plant to begin to droop or <u>wilt</u>.
When the wilted plant gets enough water, the cells will become rigid again, and the plant will stand firm and straight once again.