This sounds pretty easy, in fact. The orbital motion can be assumed to be circular and with constant speed. Then, the period is the time to do one revolution. The distance is the length of a revolution. That is 2*pi*R, where R is the distance between the Moon and the Earth (the respective centers to be precise). In summary, it's like a simple motion with constant speed:
v = 2*pi*R/T,
you have R in m and T is days, which multiplied by 86,400 s/day gives T in seconds.
Then v = 2*pi*3.84*10^8/(27.3*86,400) = 1,022.9 m/s ~ 1 km/s (about 3 times the speed of sound :)
For the Earth around the Sun, it would be v = 2*pi*149.5*10^9/(365*86,400)~ 29.8 km/s!
I know it's not in the problem, but it's interesting to know how fast the Earth moves around the Sun! And yet we do not feel it (that's one of the reasons some ancient people thought crazy the Earth not being at the center, there would be such strong winds!)
Answer:
1. Transform Boundary
2. Continental-continental convergent boundary
3. Oceanic-Oceanic Divergent boundary
Explanation:
A simple cell can be made by connecting two different metals in contact with an electrolyte. A number of cells can be connected in series to make a battery , which has a higher voltage than a single cell. In non-rechargeable cells, eg alkaline cells, a voltage is produced until one of the reactants is used up
Had to submit as image as it wouldn't let me paste these symbols in the answer box
hope this helps:)
A step-down transformer has more loops in : A. Primary coil
Primary coil refers to the coil to which alternating voltage is supplied. It's usually connected to the AC supply
hope this helps