Answer:

Explanation:
Given that,
Radius of a spherical shell, r = 0.7 m
Torque acting on the shell, 
Angular acceleration of the shell, 
We need to find the rotational inertia of the shell about the axis of rotation. The relation between the torque and the angular acceleration is given by :

I is the rotational inertia of the shell

So, the rotational inertia of the shell is
.
Answer:
A
Explanation:
Let the x represent the amount of heat generated from the fossil fuel.
88% of x = 0.88 x
0.88 x was used to convert water to steam.
heat carried by steam = 40% × 0.88 x = 0.352 x
efficiency of the heat -to- work conversion = work output / work input = 0.352 x / x = 0.352 × 100 = 35.2 % which is less than 40 %
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
<span>An ax is an example of a wedge. The correct option among all the options that are given in the question is the second option or option "b". The other choices given in the question are incorrect and can be easily neglected. I hope that this is the answer that has actually come to your great help.</span>
From conservation of energy, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
The given weight of Elliot is 600 N
From conservation of energy, the total mechanical energy of Elliot must have been converted to elastic potential energy. Then, the elastic potential energy from the spring was later converted to maximum potential energy P.E of Elliot.
P.E = mgh
where mg = Weight = 600
To find the height Elliot will reach, substitute all necessary parameters into the equation above.
250 = 600h
Make h the subject of the formula
h = 250/600
h = 0.4167 meters
Therefore, the height he will reach when he has gravitational potential energy 250J is 0.42 meters approximately
Learn more about energy here: brainly.com/question/24116470