Answer:8.28 km
Explanation:
Given
First it drifts
2.5 km

Secondly it drifts
4.70 km

After that it drifted along east direction 5.1 km

After that it drifts
7.2 km

After that it drifts
2.8 km

=
+![\left [ 2.5sin45-4.7sin60-7.2sin55+2.8sin5\right ]\hat{j}](https://tex.z-dn.net/?f=%5Cleft%20%5B%202.5sin45-4.7sin60-7.2sin55%2B2.8sin5%5Cright%20%5D%5Chat%7Bj%7D)


for direction

south of east
Answer:
A= 61.35
B= -44.40
Explanation:
1. Using the components method we have:

Considering that the vector sum
, then:

Then:

It means the value of x and y component is 0.
2. Determinate the equations that describe each component:

Form Eq. (1):

Replacing A in Eq. (2):

Replacing values of C, α and β in (4):

Replacing value of B in (3)

Answer:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

Explanation:
For this case we know the mass of the water given :

And we know that the initial temperature for this water is
.
We want to cool this water to the human body temperature 
Since the temperatures given are not near to 0C (fusion point) or 100C (the boling point) we don't need to use latent heat, then the only heat involved for this case is the sensible heat given by:

Where
represent the specific heat for the water and this value from tables we know that
for the water.
So then we have everything in order to replace into the formula of sensible heat and we got:

So then the answer for this case would be 29906 cal but we need to convert this into KJ and we know that 1 cal = 4.184 J and if we convert we got:

P= w/t and W= Work
In this case, W= 6,700j, and T= 45 seconds
Power is the ratio of work per unit time. When you perform a work in a given span of time, the ratio of work performed with respect to time is Called Power.
si unit for Power is Watt (W)
so, P= 6,700/45
P= 148
Final answer is P=148
Answer:
Diamagnetic
Explanation:
Hunds rule states that electrons occupy each orbital singly first before pairing takes place in degenerate orbitals. This implies that the most stable arrangement of electrons in an orbital is one in which there is the greatest number of parallel spins(unpaired electrons).
For vanadium V ion, there are 18 electrons which will be arranged as follows;
1s2 2s2 2p6 3s2 3p6.
All the electrons present are spin paired hence the ion is expected to be diamagnetic.