Given:
The length of the string is l = 6 m
The speed of the wave is

Required: Lowest possible frequency for the standing wave.
Explanation:
The lowest possible frequency is the fundamental frequency.
The fundamental frequency can be calculated by the formula

On substituting the values, the fundamental frequency will be

Final Answer: The lowest possible frequency for standing waves on this string is 16.67 Hz
From the law of the conservation of energy; the ratio of the total kinetic energy after the collision to the total kinetic energy before the collision must be 1.
<h3>What is momentum?</h3>
The term momentum is the product of mass and velocity. The principle of conservation of linear momentum states that total momentum before collision must be the same as the total momentum after collision thus the ratio of the total momentum after the collision to the total momentum before the collision must be 1.
Also, from the law of the conservation of energy; the ratio of the total kinetic energy after the collision to the total kinetic energy before the collision must be 1.
Learn more about momentum:brainly.com/question/24030570
#SPJ1
Answer:
a principle stating that energy cannot be created or destroyed, but can be altered from one form to another.
Explanation:
Explanation:
ls xgfmc!hchlvb! jt?bjgchfb j
The following expression is applicable:
Max. inductor energy = Max. capacitor energy
Where;
Max. inductor energy = LI^2/2, with L = 20.0 mH, I = 0.400 A
Max. capacitor energy = CV_max^2/2, C = 0.150 micro Faraday, V_max = Max. potential difference
Substituting;
LI^2/2 = CV^2/2
LI^2 = CV^2
V^2 = (LI^2)/C
V_max = Sqrt [(LI^2)/C] = Sqrt [(20*10^-3*0.4^2)/(0.15*10^-6)] = 146.06 V