(a) 328.6 kg m/s
The linear impulse experienced by the passenger in the car is equal to the change in momentum of the passenger:

where
m = 62.0 kg is the mass of the passenger
is the change in velocity of the car (and the passenger), which is

So, the linear impulse experienced by the passenger is

(b) 404.7 N
The linear impulse experienced by the passenger is also equal to the product between the average force and the time interval:

where in this case
is the linear impulse
is the time during which the force is applied
Solving the equation for F, we find the magnitude of the average force experienced by the passenger:

Answer:
Explanation:
1 )
Here
wave length used that is λ = 580 nm
=580 x 10⁻⁹
distance between slit d = .46 mm
= .46 x 10⁻³
Angular position of first order interference maxima
= λ / d radian
= 580 x 10⁻⁹ / .46 x 10⁻³
= 0.126 x 10⁻² radian
2 )
Angular position of second order interference maxima
2 x 0.126 x 10⁻² radian
= 0.252 x 10⁻² radian
3 )
For intensity distribution the formula is
I = I₀ cos²δ/2 ( δ is phase difference of two lights.
For angular position of θ1
δ = .126 x 10⁻² radian
I = I₀ cos².126x 10⁻²/2
= I₀ X .998
For angular position of θ2
I = I₀ cos².126x2x 10⁻²/2
= I₀ cos².126x 10⁻²
<span>two objects in contact with each other are the same temperature</span>
Answer:
1.1ohms
Explanation:
According to ohms law E = IR
If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5
I = 0.36A (This will be the load current).
Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.
Voltage drop = 2.2V - 1.8V = 0.4V
Then we calculate the internal resistance using ohms law.
According to the law, V = Ir
V= voltage drop
I is the load current
r = internal resistance
0.4 = 0.36r
r = 0.4/0.36
r = 1.1 ohms
Answer:
A) True. Voltmeters measure voltages
C) True. They are placed in parallel
E) True ammeters are used to measure current
Explanation:
The devices for voltage measurement are the voltmeter and ammeter
Voltmeters have very high intense resistance and are placed in parallel
The ammeters have very small resist and are placed in series
Based on this establishment, let's analyze the statements
A) True. Voltmeters measure voltages
B) False has high intense resistance
C) True. They are placed in parallel
D) False ammeters are placed in series
E) True ammeters are used to measure current
F) False ammeters have a low internal resistance