Answer:
final temperature of slug of gold is 37°C
final temperature of slug of manganese is 28.56°C
Explanation:
Hello! To solve this problem we must take into account the concept of heat capacity, this is defined as the ratio between energy and temperature rise.
In other words it is the amount of energy that is required to increase a temperature degree.
Taking into account the above we infer the following equation
where
C=heat capacity
Answer: experiment data is the things you do in the experiment and the result is the answer
To solve this problem we will apply the concepts related to the double slit-experiment. For which we will relate the distance between the Slits and the Diffraction Angle with the order of the bright fringe and the wavelength, this is mathematically given as,

Here,
d = Distance between Slits
m = Order of the fringes
= Wavelength
= 

Rearranging to find the angle,




Therefore the angle that the fourth order bright fringe occur for this specific wavelenth of light occur is 32.19°
Answer:
a. 32.67 rad/s² b. 29.4 m/s²
Explanation:
a. The initial angular acceleration of the rod
Since torque τ = Iα = WL (since the weight of the rod W is the only force acting on the rod , so it gives it a torque, τ at distance L from the pivot )where I = rotational inertia of uniform rod about pivot = mL²/3 (moment of inertia about an axis through one end of the rod), α = initial angular acceleration, W = weight of rod = mg where m = mass of rod = 1.8 kg and g = acceleration due to gravity = 9.8 m/s² and L = length of rod = 90 cm = 0.9 m.
So, Iα = WL
mL²α/3 = mgL
dividing through by mL, we have
Lα/3 = g
multiplying both sides by 3, we have
Lα = 3g
dividing both sides by L, we have
α = 3g/L
Substituting the values of the variables, we have
α = 3g/L
= 3 × 9.8 m/s²/0.9 m
= 29.4/0.9 rad/s²
= 32.67 rad/s²
b. The initial linear acceleration of the right end of the rod?
The linear acceleration at the initial point is tangential, so a = Lα = 0.9 m × 32.67 rad/s² = 29.4 m/s²