Answer:
2PO₄³⁻ + 3Fe²⁺ → Fe₃(PO₄)₂(s)
Explanation:
In a net ionic equation you list <em>only the ions that are participating in the reaction. </em>
When potassium phosphate, K₃PO₄, reacts with iron (II) nitrate, Fe(NO₃)₂ producing iron (II) phosphate, Fe₃(PO₄)₂ that is an insoluble salt. The reaction is:
2K₃PO₄ + 3 Fe(NO₃)₂ → Fe₃(PO₄)₂(s) + 6NO₃⁻ + 6K⁺
The ionic equation is:
6K⁺ + 2PO₄³⁻ + 3Fe²⁺ + 6NO₃⁻→ Fe₃(PO₄)₂(s) + 6NO₃⁻ + 6K⁺
Subtracting the K⁺ and NO₃⁻ ions that are not participating in the reaction, the net ionic equation is:
<h3>2PO₄³⁻ + 3Fe²⁺ → Fe₃(PO₄)₂(s)</h3>
The A horizon is a surface horizon that largely consists of minerals (sand<span>, </span>silt<span>, and </span>clay) and with appreciable amounts of organic matter. This horizon is predominantly the surface layer of many soils in grasslands and agricultural lands.<span>These </span>materials typically<span> accumulate through a process termed illuviation, wherein the </span>materials<span> gradually wash in from the overlying.</span>
The hydrogen and oxygen<span> atoms from H</span>₂O are <span>bonded together through covalent </span>bonding.
<h2>
Hello!</h2>
The answer is:
The percent yield of the reaction is 32.45%
<h2>
Why?</h2>
To calculate the percent yield, we have to consider the theoretical yield and the actual yield. The theoretical yield as its name says is the yield expected, however, many times the difference between the theoretical yield and the actual yield is notorious.
We are given that:

Now, to calculate the percent yield, we need to divide the actual yield by the theoretical and multiply it by 100.
So, calculating we have:

Hence, we have that the percent yield of the reaction is 32.45%.
Have a nice day!