Answer:5 to the 7th power
Explanation:
Divided 7 and y then add 4
Answer:
3.91 moles of Neon
Explanation:
According to Avogadro's Law, same volume of any gas at standard temperature (273.15 K or O °C) and pressure (1 atm) will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = <u>???</u>
V = Volume = 87.6 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 87.6 L) ÷ 22.4 L
= 3.91 moles
<h3>2nd Method:</h3>
Assuming that the gas is acting ideally, hence, applying ideal gas equation.
P V = n R T ∴ R = 0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹
Solving for n,
n = P V / R T
Putting values,
n = (1 atm × 87.6 L)/(0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹ × 273.15K)
n = 3.91 moles
Result:
87.6 L of Neon gas will contain 3.91 moles at standard temperature and pressure.
Answer:
2Zn + 2HCI ➡️ ZnCI2 + H2
LHS of equation
Z = 2
H = 2
Cl = 2
RHS of equation
Zn = 1
Cl =2
H =2
as Zn is not equal in number of atoms on both sides of the equation, the equation does not obey the law of conservation of mass
Explanation:
the law of conservation mass states that the mass of an isolated system cannot be created nor destroyed by any chemical reaction or physical transformation. thus, there must be an equal number of atoms of an element present on both sides of the equation.
Answer:
0.0738 M
Explanation:
HNO3 +LiOH = LiNO3 + H2O
Number of moles HNO3 = number of moles LiOH
M(HNO3)*V(HNO3) = M(LiOH)*M(LiOH)
M(HNO3)*50.0mL = 0.100M*36.90 mL
M(HNO3) = 0.100*36.90/50.0 M = 0.0738 M