The distance traveled by the sprinter in meters is determined as 1.88 m.
<h3>Acceleration of the sprinter</h3>
The acceleration of the sprinter is the rate of change of velocity of the sprinter with time.
The acceleration of the sprinter is calculated as follows;
Apply Newton's second law of motion as follows;
F = ma
a = F/m
where;
- F is the applied force by the sprinter
- m is mass of the sprinter
- a is acceleration of the sprinter
a = 693 N / 64 kg
a = 10.83 m/s²
<h3>Distance traveled by the sprinter</h3>
The distance traveled by the sprinter is calculated as follows;
s = ut + ¹/₂at²
where;
- u is initial velocity = 0
s = ¹/₂at²
where;
- t is time of motion
- a is acceleration
s = (0.5)(10.83)(0.59²)
s = 1.88 m
Thus, the distance traveled by the sprinter in meters is determined as 1.88 m.
Learn more about distance here: brainly.com/question/2854969
#SPJ1
Out of the given options, weight is influenced by mass and gravity
Answer: Option A
<u>Explanation:
</u>
The object's mass is defined as the quantity of a matter with which the object is formed. It can change its state of matter but the quantity will remain the same. However, the weight is defined as how much force gravity exerts on the object's mass to pull it.
The mass is always same irrespective the location but the weight may vary from one place to the other while talking for the bigger picture. For example, the object's weight may be 60 kg on Earth but when it is measured on the moon, it will be lesser.
The weight of an object generally has nothing doing with the volume and it doesn't depend solely on the gravitational pull. The mass plays a crucial role.

The answer would be 6 because 2.0x3= 6
(newton’s 2nd law)
mark me brainliest
To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 
Answer:
Explanation:
Given that,.
A house hold power consumption is
475 KWh
Gas used is
135 thermal gas for month
Given that, 1 thermal = 29.3 KWh
Then,
135 thermal = 135 × 29.3 = 3955.5 KWh
So, total power used is
P = 475 + 3955.5
P =4430.5 KWh
Since 1 hr = 3600 seconds
So, the energy consumed for 1hr is
1KW = 1000W
P = energy / time
Energy = Power × time
E = 4430.5 KWhr × 1000W / KW × 3600s / hr
E = 1.595 × 10^10 J
So, using Albert Einstein relativity equation
E = mc²
m = E / c²
c is speed of light = 3 × 10^8 m/s
m = 1.595 × 10^10 / (3 × 10^8)²
m = 1.77 × 10^-7 kg
Then,
1 kg = 10^6 mg
m = 1.77 × 10^-7 kg × 10^6 mg / kg
m = 0.177mg
m ≈ 0.18 mg