Answer:
37.64 × 10²³ atoms
Explanation:
Given data:
Number of atoms = ?
Mass of sulfur = 200.0 g
Solution:
First of all we will calculate the number of moles of sulfur.
Number of moles = mass/molar mass
Number of moles = 200.0 g/ 32 g/mol
Number of moles = 6.25 mol
Number of atoms:
Avogadro number:
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
6.25 mol × 6.022 × 10²³ atoms / 1mol
37.64 × 10²³ atoms
Answer:
No, IR should not soely be used to identify molecules
Explanation:
IR is a method that identifies the functional groups in a molecule by deducing the frequency of stretching and vibration of bonds. Each peculiar type of bond has a frequency for the vibration of each bond represented on the IR spectrum.
However, one method is never enough to identify a compound. A combination of methods must always be used to clear up ambiguities arising from overlapping IR frequencies. Also, interpretation of the nuanced peaks of the fingerprint region in IR spectra is quite challenging and only gives a fair idea of the functional groups present in the compound.
Therefore other methods such as NMR, UV-VISIBLE etc should also be involved in the identification of compounds.
Chromium (Cr): 2, 8, 8, 6
Copper (Cu): 2, 8, 8, 11
Chromium+2 (Cr+2): 2, 8, 8, 4 (if the ion retains a positive charge then the amount of electrons will decrease)
Copper+2 (Cu+2): 2, 8, 8, 9
Manganese+2 (Mn+2): 2, 8, 8, 5
The number of grams of Ag2SO4 that could be formed is 31.8 grams
<u><em> calculation</em></u>
Balanced equation is as below
2 AgNO3 (aq) + H2SO4(aq) → Ag2SO4 (s) +2 HNO3 (aq)
- Find the moles of each reactant by use of mole= mass/molar mass formula
that is moles of AgNO3= 34.7 g / 169.87 g/mol= 0.204 moles
moles of H2SO4 = 28.6 g/98 g/mol =0.292 moles
- use the mole ratio to determine the moles of Ag2SO4
that is;
- the mole ratio of AgNo3 : Ag2SO4 is 2:1 therefore the moles of Ag2SO4= 0.204 x1/2=0.102 moles
- The moles ratio of H2SO4 : Ag2SO4 is 1:1 therefore the moles of Ag2SO4 = 0.292 moles
- AgNO3 is the limiting reagent therefore the moles of Ag2SO4 = 0.102 moles
<h3> finally find the mass of Ag2SO4 by use of mass=mole x molar mass formula</h3>
that is 0.102 moles x 311.8 g/mol= 31.8 grams