Answer :
AgI should precipitate first.
The concentration of
when CuI just begins to precipitate is, 
Percent of
remains is, 0.0076 %
Explanation :
for CuI is 
for AgI is 
As we know that these two salts would both dissociate in the same way. So, we can say that as the Ksp value of AgI has a smaller than CuI then AgI should precipitate first.
Now we have to calculate the concentration of iodide ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Cu^+][I^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCu%5E%2B%5D%5BI%5E-%5D)
![1\times 10^{-12}=0.0079\times [I^-]](https://tex.z-dn.net/?f=1%5Ctimes%2010%5E%7B-12%7D%3D0.0079%5Ctimes%20%5BI%5E-%5D)
![[I^-]=1.25\times 10^{-10}M](https://tex.z-dn.net/?f=%5BI%5E-%5D%3D1.25%5Ctimes%2010%5E%7B-10%7DM)
Now we have to calculate the concentration of silver ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ag^+][I^-]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BI%5E-%5D)
![8.3\times 10^{-17}=[Ag^+]\times 1.25\times 10^{-10}M](https://tex.z-dn.net/?f=8.3%5Ctimes%2010%5E%7B-17%7D%3D%5BAg%5E%2B%5D%5Ctimes%201.25%5Ctimes%2010%5E%7B-10%7DM)
![[Ag^+]=6.64\times 10^{-7}M](https://tex.z-dn.net/?f=%5BAg%5E%2B%5D%3D6.64%5Ctimes%2010%5E%7B-7%7DM)
Now we have to calculate the percent of
remains in solution at this point.
Percent of
remains = 
Percent of
remains = 0.0076 %
The Reaction is spontaneous when temperature is 430 K. Hence, Option (C) is correct.
<h3>
</h3><h3>
What is Spontaneous reaction ?</h3>
Reactions are favorable when they result in a decrease in enthalpy and an increase in entropy of the system.
When both of these conditions are met, the reaction occurs naturally.
Spontaneous reaction is a reaction that favors the formation of products at the conditions under which the reaction is occurring.
According to Gibb's equation:
ΔG = ΔH - TΔS
ΔG = Gibbs free energy
ΔH = enthalpy change = +62.4 kJ/mol
ΔS = entropy change = +0.145 kJ/molK
T = temperature in Kelvin
- ΔG = +ve, reaction is non spontaneous
- ΔG = -ve, reaction is spontaneous
- ΔG = 0, reaction is in equilibrium
ΔH - TΔS = 0 for reaction to be spontaneous
T = ΔH / ΔS
Here,
T = 500K
Thus the Reaction is spontaneous when temperature is 500 K.
Learn more about Gibbs free energy here ;
https://brainly.in/question/13372282
#SPJ1
Answer:
Approximately 1.9 kilograms of this rock.
Explanation:
Relative atomic mass data from a modern periodic table:
To answer this question, start by finding the mass of Pb in each kilogram of this rock.
89% of the rock is
. There will be 890 grams of
in one kilogram of this rock.
Formula mass of
:
.
How many moles of
formula units in that 890 grams of
?
.
There's one mole of
in each mole of
. There are thus
of
in one kilogram of this rock.
What will be the mass of that
of
?
.
In other words, the
in 1 kilogram of this rock contains
of lead
.
How many kilograms of the rock will contain enough
to provide 1.5 kilogram of
?
.
<span>C6H12 = 6x12 + 6x1 = 78.
The equation indicates that 2x78 = 156g benzene will produce 6542kJ.
Using proportions you can then calculate that
x/6542kJ = 7.9g / 156g
x = 331.3kJ = 331300J.
heat = mass x ΔT x 4.18J/g°
ΔT = 331300J / (5691g x 4.18J/g°) = 13.9°
final temp = 21 + 14° = 35°C</span>