The answer is C. elastic potential energy
You asked a question. I'm about to answer it.
Sadly, I can almost guarantee that you won't understand the solution.
This realization grieves me, but there is little I can do to change it.
My explanation will be the best of which I'm capable.
Here are the Physics facts I'll use in the solution:
-- "Apparent magnitude" means how bright the star appears to us.
-- "Absolute magnitude" means the how bright the star WOULD appear
if it were located 32.6 light years from us (10 parsecs).
-- A change of 5 magnitudes means a 100 times change in brightness,
so each magnitude means brightness is multiplied or divided by ⁵√100 .
That's about 2.512... .
-- Increasing magnitude means dimmer.
Decreasing magnitude means brighter.
+5 is 10 magnitudes dimmer than -5 .
-- Apparent brightness is inversely proportional to the square
of the distance from the source (just like gravity, sound, and
the force between charges).
That's all the Physics. The rest of the solution is just arithmetic.
____________________________________________________
-- The star in the question would appear M(-5) at a distance of
32.6 light years.
-- It actually appears as a M(+5). That's 10 magnitudes dimmer than M(-5),
because of being farther away than 32.6 light years.
-- 10 magnitudes dimmer is ( ⁵√100)⁻¹⁰ = (100)^(-2) .
-- But brightness varies as the inverse square of distance,
so that exponent is (negative double) the ratio of the distances,
and the actual distance to the star is
(32.6) · (100)^(1) light years
= (32.6) · (100) light years
= approx. 3,260 light years . (roughly 1,000 parsecs)
I'll have to confess that I haven't done one of these calculations
in over 50 years, and I'm not really that confident in my result.
If somebody's health or safety depended on it, or the success of
a space mission, then I'd be strongly recommending that you get
a second opinion.
But, quite frankly, I do feel that mine is worth the 5 points.
Answer: a.) Roughness of the surfaces in contact with each other .
Higher the roughness of surfaces in contact with each other, greater is the friction between bodies. Force of friction will be less between smooth surfaces.
b.) Weight of the sliding/rolling body: greater the weight of the moving body on the surface, more is the force of friction on the body by the surface.
I hope this helps
Answer:
240000 mph² or miles/hour²
Explanation:
<em>Use the formula</em>
<h3>acceleration = change in velocity ÷ time</h3>
change in velocity = 300 mph - 0 mph (final velocity - intial velocity)
time = 0.00125 hours
<em>Substitute the values into the formula:</em>
acceleration = 300 ÷ 0.00125 = 240000 mph²