Answer: The given statement is false.
Explanation:
Weight :It is defined as the measure of force exerted upon the object by the gravity. It is measured in Newtons.
, where W= Weight , m = mass of the object , g = acceleration due to gravity = 
Here the given statement is False, the correct statement will be:
The density of a substance is defined as its mass divided by its volume.
S₂O₈²⁻
(aq) + 2I⁻
(aq) → I₂(aq) + 2SO₄
²⁻(aq)
2S₂O₃²⁻
(aq) + I₂(aq) → S₄O₆²⁻
(aq) + 2I⁻
(aq)
<u>Explanation:</u>
S₂O₈²⁻
(aq) + 2I⁻
(aq) → I₂(aq) + 2SO₄
²⁻(aq)
To measure the rate of this reaction we must measure the rate of concentration change of one of the reactants or products. To do this, we will include (to the reacting S₂O₈
²⁻ and I⁻
i) a small amount of sodium thiosulfate, Na₂S₂O₃,
ii) some starch indicator.
The added Na₂S₂O₃ does not interfere with the rate of above reaction, but it does consume the I₂ as soon as it is formed.
2S₂O₃²⁻
(aq) + I₂(aq) → S₄O₆²⁻
(aq) + 2I⁻
(aq)
This reaction is much faster than the previous, so the conversion of I2 back to I⁻ is essentially instantaneous.
![rate = \frac{dI2}{dt} = \frac{1/2 [S2O3^2^-]}{t}](https://tex.z-dn.net/?f=rate%20%3D%20%5Cfrac%7BdI2%7D%7Bdt%7D%20%3D%20%5Cfrac%7B1%2F2%20%5BS2O3%5E2%5E-%5D%7D%7Bt%7D)
Answer:
As potassium is larger than sodium, potassium's valence electron is at a greater distance from the attractive nucleus and is so removed more easily than sodium's valence electron. As it is removed more easily, it requires less energy, and can be said to be more reactive.
Explanation:
<em>Hope you're having a splendiferous day</em><em>.</em>
<em>Just a bored kid willing to help...</em>
Heat; rather, or change of the molecules to make them move faster