Radioactive decay is given by:
N = No x e^(-λt)
We know that N/No has to be 0.05
λ = 0.15
0.05 = e^(-0.15t)
t = ln(0.05)/(-0.15)
t = 19.97 days
Refer to the diagram shown below.
Assume that
(a) The piano rolls down on frictionless wheels,
(b) Wind resistance is negligible.
The distance along the ramp is
d = (1.3 m)/sin(22°) = 3.4703 m
The component of the piano's weight along the ramp is
mg sin(22°)
If the acceleration down the ramp is a, then
ma = mg sin(22°)
a = g sin(22°) = (9.8 m/s²) sin(22°) = 3.671 m/s²
The time, t, to travel down the ramp from rest is given by
(3.4703 m) = 0.5*(3.671 m/s²)*(t s)²
t² = 3.4703/1.8355 = 1.8907
t = 1.375 s
Answer: 1.375 s
Answer:
Comparison Microscope
Explanation:
The Comparison Microscope allows for comparison between two objects or samples by placing them side by side.
It is primarily used in criminology for ballistics which makes it ideal to find out if bullets, shells, or cartridge cases were fired from a specific weapon.
Answer:
3200 m/s
Explanation:
The speed of Sound through Argon is 319.
The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional.
If argon could exist as solid, then 3200 m/s is the best speed.