1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zvonat [6]
3 years ago
15

Consult Multiple Concept Example 10 in preparation for this problem. Traveling at a speed of 18.2 m/s, the driver of an automobi

le suddenly locks the wheels by slamming on the brakes. The coefficient of kinetic friction between the tires and the road is 0.590. What is the speed of the automobile after 1.43 s have elapsed?
Physics
1 answer:
Anettt [7]3 years ago
7 0

Answer:

The speed of the automobile after 1.43s is 10 \frac{m}{s}

Explanation:

a= \frac{-f}{m}= \frac{-u_{k}*m*g}{m}

a= -u_{k}*g=- 0.590* 9.8 \frac{m}{s^{2} }= -5.782 \frac{m}{s^{2} }

V_{f} = V_{i} + a*t

V_{f} = 18.2 \frac{m}{s} - (5.782 \frac{m}{s^{2} }* 1.43 s)

V_{f} = 9.93174 \frac{m}{s}

V_{f} ≅ 10 \frac{m}{s}

You might be interested in
16x^2y^2-25a^2b^2<br>factorize the expression​
SIZIF [17.4K]

Answer:

(4xy+5ab)(4xy-5ab)

Explanation:

16x^{2}y^{2}-25a^{2}b^{2}

4^2 is 16 and 5^2 is 25,

Also, (x-a)(x+a) = x^2-a^2

So, this factorized is:

(4xy+5ab)(4xy-5ab)

Hope this helps!

8 0
2 years ago
Forces that act in equal and opposite directions on an object
Akimi4 [234]
These are known as balanced forces because they will not change the motion of the object, and it will remain at rest unless forces become unbalanced- meaning they would be unequal and not opposing. 
5 0
2 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
2 years ago
Why does the balloon stick to the wall
ryzh [129]

Answer:Magic

Explanation:

You know its true.

5 0
3 years ago
Read 2 more answers
Which of the following statements is/are true? Check all that apply. Check all that apply. The total mechanical energy of a syst
Taya2010 [7]

Answer:

1) True, 2) True, 3) False, 4) False, 5) False

Explanation:

1) True. Dissipative energy cannot be recovered, in general it is a form of heat

2) True. The dissipation can be by radiation, heat

3) False. Mechanical energy is divided into K and U but not in equal parts

4) False. When there are dissipative interactions, part of the mechanical energy is set in the form of heat, so its value decreases

5) False. Mechanical energy is the sum of those two energies

8 0
2 years ago
Other questions:
  • What is the weight of a 48 kg girl on Earth? Round the answer to the nearest whole number.
    6·2 answers
  • An electron in a mercury atom jumps from level a to level g by absorbing a single
    9·1 answer
  • a rifle is used during the biathlon event in the Olympics the rifle has a mass of 2.5 kg the bullet has amass of 0.02 kg after t
    15·2 answers
  • Question 1
    10·2 answers
  • Speakers A and B are vibrating in phase. They are directly facing each other, are 8.0 m apart, and are each playing a 75.0-Hz to
    6·2 answers
  • When compounds form, what is one result for the atoms that bonded?
    7·1 answer
  • Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled wi
    9·1 answer
  • We only see objects because they absorb light. <br> True or False?
    9·1 answer
  • Calculate the average speed of a runner who runs for 500 meters in 40 second HELP!
    7·1 answer
  • If the Earth’s mass decreased, how would the gravity between the Sun and Earth change?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!