Answer:
9.4 m/s
Explanation:
The work-energy theorem states that the work done on an object is equal to the change in kinetic energy of the object.
So we can write:

where in this problem:
W = -36.733 J is the work performed on the car (negative because its direction is opposite to the motion of the car)
is the initial kinetic energy of the car
is the final kinetic energy
Solving for Kf,

The kinetic energy of the car can be also written as

where:
m = 661 kg is the mass of the car
v is its final speed
Solving, we find

I am sorry if it didn't helped
answers;
Calculate the buoyant force of a piece of cork of 8cm3 that floats in water. Density of cork is 207kg/m3. ?
I need the mass, in order to get the volume to apply t to the Buoyancy formula of: B=(W)object=(m)object(g)
Explanation:
From Archimedes Principle, any object partially or totally submerged in a fluid is buoyed upwards with a force equal to the weight of the displaced fluid.
∴
B
=
ρ
f
l
V
f
l
g
=
1000
k
g
/
m
3
×
8
×
10
−
6
m
3
×
9
,
8
m
/
s
2
=
0
,
0784
N
(assuming the density of water is at standard temperature and pressure, and that the cork is totally submerged as it floats in the water
it's not the answer of your question ⁉️ but it is similar ........
Answer:
An example in which liquid pressure phenomena can be used in daily life is in Water blasting
Explanation:
Water blasting refers application of pressurized water to remove materials from the surface of objects.
There are different varieties of water blasting, including;
Hydrocleaning; Cleaning enabled by the use of high pressure water
Hydrodemolition; Demolition or removal of concrete using pressurized water
Hydrojetting; The spraying of water under pressure on surfaces in order to remove surface contaminants.