When I bump the table, the coffee in my cup spilled out. Newton's 1st law explains this reaction.
Answer: A) or the first option.
A solar eclipse occurs when the moon crosses in front of the Sun, blocking some or all of its rays. A lunar eclipse happens when the moon is directly behind the earth, blocking the moon from receiving light. The only light comes from the light on earth's reflected shadow.
You can look at a lunar eclipse because there is very little light or none at all. You can't look at a solar eclipse because you are looking directly at the sun unless it is complete. Before totality, only some of the Sun is blocked, causing your pupils dilate to let in more light. Since they do this, more of the Sun's rays can be let in to the eye, which effectively allows your eyes to burn.
Some doctors and eye care specialists say that after someone complains of blindness after looking at a solar eclipse unaided, they can see what the Sun and moon looked like at the time that they looked at it, as it is burned onto their retinas.
Here we have perfectly inelastic collision. Perfectly inelastic collision is type of collision during which two objects collide, stay connected and momentum is conserved. Formula used for conservation of momentum is:

In case of perfectly inelastic collision v'1 and v'2 are same.
We are given information:
m₁=0.5kg
m₂=0.8kg
v₁=3m/s
v₂=2m/s
v'₁=v'₂=x
0.5*3 + 0.8*2 = 0.5*x + 0.8*x
1.5 + 1.6 = 1.3x
3.1 = 1.3x
x = 2.4 m/s
Answer:
5.33*10^-3 seconds
Explanation:
c = d/t
c = speed of light constant (3.0*10^5 km/s)
d = distance (1600 km)
t = ?
3.0*10^5 = 1600/t
t = 1600/3.0*10^5
t = 5.33*10^-3 seconds
I hope this helped! :)
Answer:
Gravity, Friction, Air resistance, magnetism, static electricity
Explanation: