<span> (ρ = m / V) hope this helps...:)</span>
<span>Answer: The acceleration of 10 kg object is greater than that of 18 kg object.
Explanation:
According to Newton's Second law:
F = ma --- (A)
Let's find the acceleration for both 10 kg and 18 kg objects!
The net force on both of these masses = F = 20N
(1) Acceleration of 10 kg object
Mass = m = 10 kg
Plug in the values in equation (A):
20 = 10 * a
Acceleration = a = 2 m/s^2
(2) Acceleration of 18 kg object
Mass = m = 18 kg
Plug in the values in equation (A):
20 = 18 * a
Acceleration = a = 1.11 m/s^2
2 > 1.11; therefore, 10 kg object has the higher acceleration compared to the acceleration of the 18 kg object.</span>
Answer:
False
Explanation:
According to the big bang theory, matter was an infinitely small and very high density point which at one point exploded and expanded in all directions, creating what we know as our Universe, which also includes space and time . This happened about 13.8 billion years ago. Theoretical physicists have managed to reconstruct this chronology of events from 1/100 of a second after the Big Bang. After the explosion, while the Universe expanded, it cooled sufficiently and the first subatomic particles were formed: Electrons, Positrons, Mesons, Barions, Neutrinos, Photons among others. Today more than 90 particles are known. This theory solves many unknowns and is very well received by the scientific community, however there is still much to solve, for example, one of the great unsolved scientific problems in the expanding Universe model is whether the Universe is open or closed.
An attempt to solve this problem is to determine if the average density of matter in the Universe is greater than the critical value in Friedmann's model. The mass of a galaxy can be measured by observing the movement of its stars; multiplying the mass of each galaxy by the number of galaxies, it is seen that the density is only 5 to 10% of the critical value.
Answer:
Total time taken=110 seconds
Total distance traveled=480m
Explanation:
First of all, we find the total time taken:
For that, we use the formula : Distance/Speed= Time
Time for part 1 : 200/5=40 seconds
Time for part 2 : 280/4=70seconds
Total time taken=110 seconds
Total distance traveled=480m
Average Speed= 480/110=4.36 m/s
Total displacement=200-280=-80m (Since this is displacement, we need to find the distance between the initial and final point. Also, I've taken east direction as positive and west as negative)
Average Velocity=-80/110=-0.72 m/s
OR 0.72m/s towards west.