Using the relative atomic weights of both copper and sulfur ie copper = 63.55 and sulfur is 32.06 so 63.55+32.06=95.56 total mass and so of this, copper = 63.55/95.56=66.4%. So to get 10 grams of copper, use the formula 10g=66.4%xCuS so CuS=10/0.664=15.06 grams of CuS.
Answer:
An example for gaining potential energy would be: A glass bottle on the top of a high shelf would have more high potential energy than a glass bottle on the middle or bottom shelf because it has a long way or more farther to fall down or brake.
Explanation:
Remember Potential Energy is the restored energy of an object has.
I hope this helps you!
Answer:
Q.1
Given-
Volume of solution-1 L
Molarity of solution -6M
to find gms of AgNO3-?
Molarity = number of moles of solute/volume of solution in litre
number of moles of solute = 6×1= 6moles
one moles of AgNO3 weighs 169.87 g
so mass of 6 moles of AgNO3 = 169.87×6=1019.22
so you need 1019.22 g of AgNO3 to make 1.0 L of a 6.0 M solution
Answer:
Red
Explanation:
Violet - shortest wavelength, around 400-420 nanometers with highest frequency. They carry the most energy.
Indigo - 420 - 440 nm
Blue - 440 - 490 nm
Green - 490 - 570 nm
Yellow - 570 - 585 nm
Orange - 585 - 620 nm
Red - longest wavelength, at around 620 - 780 nanometers with lowest frequency and least amount of energy
Therefore, <em>red </em>is the answer you're looking for.
I hope this helps and that you have a great day! :)
Answer:
0.106 mol (3s.f.)
Explanation:
To find the number of moles, divide the mass of glucose (in grams) by its Mr. Glucose has a chemical formula of C6H12O6. To find the Mr, add all the Ar of all the atoms in C6H12O6.
Ar of C= 12, Ar of H= 1, Mr of O= 16
These Ar values can be found on the periodic table.
Mr of glucose= 6(12)+ 12(1) + 6(16)= 180
Moles of glucose
= mass ÷ mr
= 19.1 ÷ 180
= 0.106 mol (3 s.f.)