<span>When a sound wave reaches near the ear, the outer part of the ear acts like if its a funnel, so it catches the wave and funnels it into the ear. They the wave hits the eardrum. Then the bones in the eardrum cause each other to vibrate. Then they are sensed by nerves and sends signals to the brain to interpret sound. Hope This Helps!</span>
At equilibrium the concentrations of:
[HSO₄⁻] = 0.10 M;
[SO₄²⁻] = 0.037 M;
[H⁺] = 0.037 M;
There is initially very little H+ and no SO₄²⁻ in the solution. A salt is KHSO₄⁻. All KHSO₄⁻ will split apart into K⁺ and HSO₄⁻ ions. [HSO₄⁻] will initially be present at a concentration of 0.14 M.
HSO₄⁻ will not gain H⁺ to produce H₂SO₄ since H₂SO₄ is a strong acid. HSO₄⁻ may act as an acid and lose H⁺ to form SO₄²⁻. Let the final H⁺ concentration be x M. Construct a RICE table for the dissociation of HSO₄²⁻.
R
⇄ 
I 
C

E

×
for
. As a result,
![\frac{[H^+]. [SO_4^2^-]}{HSO_4^-} = K_a](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B%5D.%20%5BSO_4%5E2%5E-%5D%7D%7BHSO_4%5E-%7D%20%3D%20K_a)
is large. It is no longer valid to approximate that
at equilibrium is the same as its initial value.

×
× 
Solving the quadratic equation for
since
represents a concentration;

Then, round the results to 2 significant figure;
Learn more about concentration here:
brainly.com/question/14469428
#SPJ4
Answer:
isopropyl benzene (cumene)
Explanation:
The reaction of isopropyl chloride and AlCl3 and benzene belongs to the class of organic reactions known as the Friedel Kraft alkylation.
The mechanism of the reaction involves the formation of a tetrahedral complex [AlCl4]^-.
The electrophile now is the isopropyl group which attacks the benzene to yield the product.
Answer:
Explanation:
When air masses will move over cold location then bottom layer of air cools and become more dense. Due to its high density it is trapped near the ground then it flow towards the equator.
When it moves over hot location then bottom layer gets hot and lighter. Then it moves towards poles.
It changes the temperature and humidity of the climate. making hoter region coll and cooler region a bit hot.
The sodium-potassium pump does not run out of ions since ion exchange is essential for the action potential to take place and to maintain homeostasis.
The cell has variable concentrations of different substances compared to the environment that surrounds it, with significant differences with sodium and potassium.
- The main function of the sodium-potassium pump is to maintain homeostasis of the intracellular medium, controlling the concentrations of these two ions.
- In order to carry out the adequate exchange of sodium and potassium ions in the extra and intracellular medium, the cells need an active transport process that is carried out thanks to the sodium potassium pump.
- This process is needed for the maintenance and functioning of cells, and it is essential for the action potential to be executed, necessary for the transmission of electrical impulses from neuron to neuron.
Therefore, we can conclude that the sodium potassium pump produces an exchange of potassium ions for sodium ions which keeps the cellular system functioning properly.
Learn more here: brainly.com/question/24336764