Answer:
0.6kg
Explanation:
the unknown here is the mass of the second block
applying the law of the conservation of momentum
m₁v₁ + m₂v₂ = (m₁ + m₂) v₃
where m₁=mass of first block=2.2kg
m₂=mass of colliding block= ?
v₁= velocity of first block=1.2m/s
v₂=velocity of colliding block=4.0m/s
v₃= final velocity of combined block=1.8m/s
applying the formula above
(2.2 × 1.2) + (m₂ × 4) = (2.2 + m₂) × 1.8
2.64 + 4m₂ = 3.96 + 1.8m₂
collecting like terms
4m₂ - 1.8m₂ = 3.96 - 2.64
2.2m₂=1.32
divide both sides by 2.2
m₂= 0.6kg
Answer:
The constriction causes the mercury column to break under tension, leaving a vacuum between the bottom of the column and that in the bulb, and the top of the column stays still at the position reached in the body - a "peak hold" system.
The voltage<span> difference between the two plates can be expressed in terms of the </span>work<span> done on a positive test charge q when it moves from the positive to the negative plate.</span><span>
E=V/d
where V is the voltage and d is the distance between the plates.
So,
E=6.0V/1mm= 6000 V/m. The electric field between the plates is 6000 V/m.</span>
Answer:
So frigid temps I think .
Explanation:
The neritic zone is a shallow zone of water. It is sunlit and it receives ample solar insolation all year round. The salinity of this zone is very stable. This makes for organism to thrive. The neritic zone is home to diverse aquatic life.
To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>