1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dlinn [17]
3 years ago
10

In a Hydrogen atom an electron rotates around a stationary proton in a circular orbit with an approximate radius of r =0.053nm.

(a) Find the magnitude of the electrostatic force of attraction, Fe between the electron and the proton. (b) Find the magnitude of the gravitational force of attraction Fg , between the electron and the proton, and find the ratio, Fe /Fg . me = 9.11 x 10-31kg, e = 1.602 x 10-19C mp = 1.67 x 10-27kg k = 9 x 109 Nm2 /C2 G = 6.67 x 10-11 Nm2 /kg2
Physics
1 answer:
leonid [27]3 years ago
6 0

Answer:

(a): F_e = 8.202\times 10^{-8}\ \rm N.

(b): F_g = 3.6125\times 10^{-47}\ \rm N.

(c): \dfrac{F_e}{F_g}=2.27\times 10^{39}.

Explanation:

Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053\times 10^{-9} m.

Part (a):

According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges q_1 and q_2 respectively is given by

F_e = \dfrac{k|q_1||q_2|}{r^2}

where,

  • k = Coulomb's constant = 9\times 10^9\ \rm Nm^2/C^2.
  • r = distance of separation between the charges.

For the given system,

The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, q_1 = +1.6\times 10^{-19}\ C.

The charge on the electron, q_2 = -1.6\times 10^{-19}\ C.

These two are separated by the distance, r = 0.053\times 10^{-9}\ m.

Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

F_e = \dfrac{(9\times 10^9)\times |+1.6\times 10^{-19}|\times |-1.6\times 10^{-19}|}{(0.053\times 10^{-9})^2}=8.202\times 10^{-8}\ \rm N.

Part (b):

The gravitational force of attraction between two objects of masses m_1 and m_1 respectively is given by

F_g = \dfrac{Gm_1m_2}{r^2}.

where,

  • G = Universal Gravitational constant = 6.67\times 10^{-11}\ \rm Nm^2/kg^2.
  • r = distance of separation between the masses.

For the given system,

The mass of proton, m_1 = 1.67\times 10^{-27}\ kg.

The mass of the electron, m_2 = 9.11\times 10^{-31}\ kg.

Distance between the two, r = 0.053\times 10^{-9}\ m.

Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

F_g = \dfrac{(6.67\times 10^{-11})\times (1.67\times 10^{-27})\times (9.11\times 10^{-31})}{(0.053\times 10^{-9})^2}=3.6125\times 10^{-47}\ \rm N.

The ratio \dfrac{F_e}{F_g}:

\dfrac{F_e}{F_g}=\dfrac{8.202\times 10^{-8}}{3.6125\times 10^{-47}}=2.27\times 10^{39}.

You might be interested in
Which organism makes its own food? A mouse B snake C grass D owl
bearhunter [10]
Your answer will be C: grass

NOT A, because a mouse would eat seeds, grass, etc
NOT B, because a snake is a carnivore
NOT D, because a owl is also a carnivore
6 0
3 years ago
Read 2 more answers
A sample of copper has a volume of 23.4 cm3 if the density of copper is 8.9 gcm3 what is the coppers mass?
murzikaleks [220]
The answer is:  " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V  ;  That is,  "mass divided by volume" ;
 
Density is expressed as:
__________________________________________    
                   "mass per unit volume";  in which the "mass" is expressed in units of "g" ("grams") ;  and the "unit volume" is expressed in units of:
    "cm³ " or "mL"; 
_____________________________________________
           {Note the exact equivalent:  1 cm³ = 1 mL }.
____________________________________________
         →  The formula is:  " D = m / V "  ; 
___________________________________________
   in which:

     "D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given); 

     "m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
                 
     "V" refers to the "volume", in units of "cm³ " ;
               which is:  "23.4 cm³ " (given);
_________________________________________________
                 We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________ 
              D  =  m / V ; 
_________________________________________________________
             And we rearrange; to isolate "m" (mass) on ONE side of the    equation; and then we plug in our known/given values;
 to solve for "m" (mass);  in units of "g" (grams) ;
___________________________________________________
    Multiply each side of the equation by "V" ; 
____________________________________________________
             V * { D  =  m / V } ;  to get:
____________________________________________________
      V * D = m ;   ↔   m = V * D ;
___________________________________________________
           Now, we plug in the given values for "V" (volume) and "D" (density) ;     to solve for the mass, "m" ;
______________________________________________________
           m  =  V * D ;
 
           m  =  (23.4 cm³) * (8.9 g / 1 cm³)  = (23.4 * 8.9) g = 208.26 g ;
  
 →  Round to "208 g" (3 significant figures);  
____________________________________
The answer is:  " 208 g " .
_____________________________________________________
7 0
3 years ago
In lightning , light is seen first and sound is heard later it is due to
Maksim231197 [3]

Answer:

option 4

Explanation:

Light's velocity in air ( 3 × 10^8 m/s ) is much greater than sound's velocity in air ( 343 m/s )

Hence due to difference in velocities , during lightning light is seen first & sound is heard later

8 0
3 years ago
Read 2 more answers
What would happen if our bodies could not metabolize glucose?
nadya68 [22]

It’s really C of the most mataboliza

6 0
3 years ago
Read 2 more answers
If Steve throws the football 50 meters in 3 seconds, what is the average speed of the football? Speed = distance / time Question
leva [86]

Answer:

A. 16.67 m/s

Explanation:

Speed or velocity refers to the rate of change in distance over a change in time. That is;

Speed = Distance ÷ time

Where;

Speed is in metre/seconds

Distance is in metre

Time is in seconds.

In this question, Steve throws a football 50 meters in 3 seconds. The average speed can be calculated this:

S = D/t

Where; d = 50m, t = 3s

S = 50/3

S = 16.6666666

S = 16.67m/s

5 0
2 years ago
Other questions:
  • In the water cycle, which state of matter has the particles closest together?
    9·2 answers
  • <img src="https://tex.z-dn.net/?f=x%20%2B%205%20%3D%200.5%28x%20%20%2B%203%29%20%5E%7B2%7D%20" id="TexFormula1" title="x + 5 = 0
    8·1 answer
  • Superman is flying 54.5 m/s when he sees
    13·1 answer
  • Physics 1 Course. please help. ​
    8·1 answer
  • Look around the room you are in. Name
    7·2 answers
  • 40 POINTS!!! PLEASE HELPP!!!
    5·2 answers
  • The angle of incidence of another red ray is 65º. The refractive index of the glass of block
    7·1 answer
  • Sometimes my music is played value can feel your body shaking explain what is happening in terms of resonance?
    14·1 answer
  • A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume calorimeter. Consequently,
    14·1 answer
  • A softball pitcher throws a softball to a catcher behind home plate. the softball is 3 feet above the ground when it leaves the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!