Answer:
To establish this relationship we must examine the potentials that these forces create. The electrical potential is described by
Ve = k q / r
The potential for strong nuclear force is
Vn (r) = - gs / 4pir exp (-mrc / h)
Where gs is the stacking constant and r the distance between the nucleons,
We can compare these potentials where the force is derived from the relationship
E = -dU / dr
F = q E
Explanation:
It would be helpful if you gave me a bit more information on what the cars speed is
Answer:
It will take 15.55s for the police car to pass the SUV
Explanation:
We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:
1. 
2. 
Since both cars will travel the same distance x, we can equal both formulas and solve for t:

We simplify the fraction present and rearrange for our formula so that it equals 0:

In the very last step we factored a common factor t. There is two possible solutions to the equation at
and:

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at
(when the SUV passed the police car) and
(when the police car catches up to the SUV)
m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J
A car that experiences a deceleration of -41.62 m/s² and comes to a stop after 10.99 m has an initial velocity of 30.60 m/s.
A car experiences a deceleration (a) of -41.62 m/s² and comes to a stop (final velocity = v = 0 m/s) after 10.99 m (s).
We can calculate the initial velocity of the car (u) using the following kinematic equation.
![v^{2} = u^{2} + 2as\\\\u = \sqrt[]{v^{2}-2as} = \sqrt[]{(0m/s)^{2}-2(-42.61m/s^{2} )(10.99m)} = 30.60m/s](https://tex.z-dn.net/?f=v%5E%7B2%7D%20%3D%20u%5E%7B2%7D%20%2B%202as%5C%5C%5C%5Cu%20%3D%20%5Csqrt%5B%5D%7Bv%5E%7B2%7D-2as%7D%20%3D%20%5Csqrt%5B%5D%7B%280m%2Fs%29%5E%7B2%7D-2%28-42.61m%2Fs%5E%7B2%7D%20%29%2810.99m%29%7D%20%3D%2030.60m%2Fs)
A car that experiences a deceleration of -41.62 m/s² and comes to a stop after 10.99 m has an initial velocity of 30.60 m/s.
Learn more: brainly.com/question/14851168