Answer:
A
Explanation:
The molecules in both metal and surrounding air will start moving slower because of the sudden decrease in environment tmeperature. The thermal energy around the metal plate decreases, also decreasing the kinetic energy.
Answer:
64.52 mg.
Explanation:
The following data were obtained from the question:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Final amount (N) =.?
Next, we shall determine the rate constant (K).
This is illustrated below:
Half life (t½) = 1590 years
Rate/decay constant (K) =?
K = 0.693 / t½
K = 0.693/1590
K = 4.36×10¯⁴ / year.
Finally, we shall determine the amount that will remain after 1000 years as follow:
Half life (t½) = 1590 years
Initial amount (N₀) = 100 mg
Time (t) = 1000 years.
Rate constant = 4.36×10¯⁴ / year.
Final amount (N) =.?
Log (N₀/N) = kt/2.3
Log (100/N) = 4.36×10¯⁴ × 1000/2.3
Log (100/N) = 0.436/2.3
Log (100/N) = 0.1896
Take the antilog
100/N = antilog (0.1896)
100/N = 1.55
Cross multiply
N x 1.55 = 100
Divide both side by 1.55
N = 100/1.55
N = 64.52 mg
Therefore, the amount that remained after 1000 years is 64.52 mg
Negatively charged particles in atom - Electrons
M Fe = 55,85g ≈ 56g
m O = 16g
m N = 14g
m Fe(NO3)3 = 56g + 3*14g + 3*3*16g = 242g/mol
answer: (4)
A. Protons neutrons and electrons.
Haha those three make up a simple Atom.